Zylinder (Geometrie)
Ein Zylinder (lat. cylindrus, altgriechisch κύλινδρος kýlindros, von κυλίνδειν kylíndein ‚rollen‘, ‚wälzen‘) ist im einfachsten Fall eine
- Fläche, deren Punkte von einer festen Gerade, der Achse, denselben Abstand haben.
Da solch eine Fläche unendlich ausgedehnt ist, beschneidet man sie normalerweise mit zwei parallelen Ebenen der Distanz (s. Bild).
- Sind die Schnittebenen senkrecht zur Achse, entsteht ein senkrechter (oder gerader) Kreiszylinder mit Radius und Höhe . Die so beschnittene Fläche heißt Mantelfläche des Zylinders, die Schnittflächen senkrecht zur Achse können jeweils als Grundfläche bezeichnet werden.
Da man sich einen geraden Kreiszylinder auch durch Rotation einer Strecke um die (parallele) Zylinderachse erzeugt denken kann, wird er auch Drehzylinder genannt. Die erzeugenden Strecken nennt man Mantellinien des Zylinders oder auch Erzeugende.
In der Technik versteht man unter einem Zylinder oft den Körper, der von der Mantelfläche und den beiden Schnittkreisflächen eingeschlossen wird.
In der Mathematik definiert man einen Zylinder allgemeiner (siehe Abschnitt allgemeiner Zylinder)
Kreiszylinder
In der Praxis spielt der senkrechte Kreiszylinder in verschiedenen Variationen eine wichtige Rolle. Deshalb werden hierfür konkrete Formeln angegeben.
Senkrechter Kreiszylinder
Es ergibt sich für
- das Volumen (Grundfläche × Höhe)
- die Mantelfläche (die Abwicklung ist ein Rechteck der Länge und Höhe )
- die Oberfläche
Ein gerader Kreiszylinder mit heißt gleichseitiger Zylinder. Diese Bezeichnung erklärt sich wie folgt: Schneidet man einen solchen Zylinder mit einer Ebene, die die Zylinderachse enthält, so erhält man ein Quadrat (mit der Seitenlänge ).
Ist der Querschnitt eine Ellipse mit den Halbachsen , so ist
- Für die Mantelfläche gibt es keine einfache Formel.
Hohlzylinder
Besitzt ein gerader Kreiszylinder eine Bohrung entlang seiner Achse, so spricht man von einem Hohlzylinder. Für einen Hohlzylinder – etwa ein gerades Rohrstück – sind die bestimmenden Größen neben der Höhe der Außenradius und der Innenradius . Die Wanddicke b ist somit .
- Das Volumen ist
- die Mantelfläche (innen und außen)
- die Oberfläche
Ist die Höhe eines Hohlzylinders kleiner als dessen Außenradius , wird von einer Lochscheibe mit konzentrischer, kreisförmiger Öffnung gesprochen.
Zylinderabschnitt
Schneidet man einen geraden Kreiszylinder (Radius ) mit einer Ebene schräg ab, entsteht als Schnittkurve eine Ellipse. Hat der untere Zylinderabschnitt die minimale Höhe und die maximale Höhe , so hat die Schnittellipse
- die große Halbachse und die kleine Halbachse , wobei ist, mit dem Neigungswinkel der Schnittebene,
- die numerische Exzentrizität .
Der Zylinderabschnitt selbst hat
- das Volumen ,
- die Mantelfläche
- die Oberfläche .
Bemerkung: Das Volumen und die Mantelfläche sind gleich dem des Zylinders mit der mittleren Höhe .
Volumenberechnung eines liegenden Kreiszylinders (Tank-Problem)
Die Berechnung des Inhalts eines teilweise gefüllten liegenden Kreiszylinders kann anhand der Länge , des Radius sowie der Füllhöhe vorgenommen werden. Nach der oben angegebenen Gleichung Volumen = Grundfläche · Höhe ergibt sich das Volumen der Füllung durch Multiplikation des Flächeninhalts des Kreissegments mit der Länge des Zylinders:
- .
Allgemeiner Zylinder
In der Mathematik definiert man einen Zylinder(-Mantel) allgemeiner:
- Eine ebene Kurve in einer Ebene wird entlang einer Gerade, die nicht in enthalten ist, um eine feste Strecke verschoben. Je zwei sich entsprechenden Punkte der Kurven und der verschobenen Kurve werden durch eine Strecke verbunden. Die Gesamtheit dieser parallelen Strecken bildet die zugehörige Zylinder-Fläche (siehe Bild). Die Kurve nennt man Leitkurve. Eine auf dem Zylinder liegende Gerade heißt Erzeugende oder Mantellinie.
Ist die Kurve ein Kreis, entsteht ein schiefer Kreiszylinder. Falls ist, ergibt sich ein senkrechter Kreiszylinder.
Ist eine geschlossene Kurve, kann man die Mantelfläche mit den beiden Begrenzungsflächen wieder als Oberfläche eines Körpers auffassen. Ist die Kurve nicht geschlossen, z.B. ein Parabelbogen (siehe unten), so ist der Zylinder nur die oben erklärte Mantelfläche, die allerdings Teil einer Oberfläche eines Körpers sein kann.
Die geometrische Besonderheit einer Zylinderfläche besteht in der folgenden Tatsache:
- Eine Zylinderfläche enthält Geraden, sie ist eine Regelfläche, und kann unverzerrt in die Ebene abgewickelt werden.
Insbesondere diese Eigenschaft macht die Zylinderfläche für die Herstellung von Blechverkleidungen interessant.
- Ist die erzeugende Kurve ein Polygon, so spricht man von einem Prisma (siehe Beispiele).
Eigenschaften eines allgemeinen Zylinders
Volumen, Mantelfläche und Oberfläche eines allgemeinen Zylinders berechnen sich wie folgt:
- Volumen: falls eine geschlossene Kurve ist,
- wobei die Grundfläche (von eingeschlossene Fläche) und die Höhe ist (siehe Cavalierisches Prinzip).
Bei einem Prisma lässt sich die Grundfläche entweder direkt (Rechteck) oder durch eine geeignete Zerlegung in Drei- und/oder Rechtecke berechnen (siehe Flächeninhalt). Ist eine stückweise glatte Kurve, kann man durch geeignete Integrale direkt oder numerisch den Inhalt bestimmen.
- wobei der Umfang (Bogenlänge) des Querschnitts (Schnittkurve zu den Mantellinien) und die Länge des Mantels ist (siehe Bild). Man beachte: kann man als senkrechte Parallelprojektion der Leitkurve auf irgendeine Querschnittsebene (senkrecht zu den Mantellinien) auffassen.
Bei einem senkrechten Zylinder ist und die Länge der Leitkurve .
Bei einem schiefen Zylinder der Höhe ist wobei der Winkel der Zylinderachse (Richtung von ) und der Normalen der Ebene ist. Die Querschnittkurve ist im Falle eines schiefen Kreis- oder elliptischen Zylinders eine Ellipse, bei einem Prisma ein Polygon. Der Umfang ist bei einem Polygon einfach die Summe der Kantenlängen, bei einem Kreis . Bei einer stückweise glatten Leitkurve kann man versuchen, die Länge der Querschnittkurve mit Hilfe eines Kurvenintegrals zu berechnen. Aber selbst bei einer Ellipse, die kein Kreis ist, ist dies schon ein Problem (siehe elliptisches Integral), das man nur numerisch lösen kann.
- Oberfläche: , falls eine geschlossene Kurve ist.
Analytische Beschreibung
Die Mantelfläche eines senkrechten Kreiszylinders mit Radius und Höhe , der auf der x-y-Ebene steht und die z-Achse als Achse besitzt, lässt sich durch eine Gleichung in x,y und eine Ungleichung für z beschreiben:
Will man den Vollzylinder beschreiben, muss man durch mit ersetzen.
Ersetzt man die Kreisgleichung durch die Gleichung einer Ellipse, erhält man die Beschreibung eines senkrechten elliptischen Zylinders:
- Das Volumen ist
Eine Parameterdarstellung eines senkrechten Kreis- bzw. elliptischen Zylinders erhält man, in dem man die übliche Parameterdarstellung eines Kreises bzw. einer Ellipse verwendet:
Die Gleichung eines im Raum beliebig gelagerten Zylinders ist schwierig anzugeben. Die Parameterdarstellung eines beliebigen elliptischen Zylinders dagegen relativ einfach:
Dabei ist der Mittelpunkt der Bodenellipse und sind drei linear unabhängige Vektoren. zeigt in Richtung der Zylinderachse (siehe Bild).
Sind die drei Vektoren paarweise orthogonal und ist , so wird durch die Parameterdarstellung ein senkrechter Kreiszylinder mit Radius und Höhe beschrieben (siehe Bild).
Dass ein beliebiger elliptischer Zylinder auch immer Kreise enthält wird in Kreisschnittebene gezeigt.
Diese Art von Parameterdarstellung ist sehr flexibel. z.B. stellt
einen parabolischen Zylinder in allgemeiner Lage dar (siehe Bild, Parabel).
Ein senkrechter parabolischer Zylinder lässt sich analog zum senkrechten Kreiszylinder auch durch
beschreiben.
Die Parameterdarstellung
stellt einen hyperbolischen Zylinder in allgemeiner Lage dar (siehe Hyperbel).
Ein senkrechter hyperbolischer Zylinder lässt sich analog zum senkrechten elliptischen Zylinder durch
beschreiben.
Anwendungsbeispiele
Silo
Getreidesilos haben oft die Form eines Zylinders.
Ein zylinderförmiges Getreidesilo mit dem Durchmesser 12 Meter und der Höhe 60 Meter wird zu 40 Prozent mit Weizen gefüllt. Es ist also und .
Daraus ergeben sich das Volumen und die Oberfläche:
- Volumen:
- Oberfläche:
Das Getreidesilo wird also mit etwa 2714 Kubikmetern Weizen gefüllt. Die Oberfläche beträgt etwa 1131 Quadratmeter.
Siehe auch
Literatur
- Bronstein-Semendjajew: Taschenbuch der Mathematik. Harri-Deutsch-Verlag, 1983, ISBN 3-87144-492-8.
- Arnfried Kemnitz: Mathematik zum Studienbeginn: Grundlagenwissen für alle technischen, mathematisch-naturwissenschaftlichen und wirtschaftswissenschaftlichen Studiengänge. Springer, 2010, ISBN 978-3-8348-1293-3.
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 15.09. 2022