Rotationsachse

Eine Rotationsachse oder Drehachse ist eine Gerade, um die die Drehung (Rotation) eines Körpers erfolgt oder erfolgen kann.

Veranschaulichungen und Anwendungsfälle

Anschaulich machen lässt sich die Drehachse anhand des Rades. Die Drehachse steht senkrecht auf den Speichen. Sie steht auch senkrecht auf dem Radreifen, der einen Kreis darstellt. In abstrakter Betrachtungsweise kommt man ohne Speichen und Reifen aus. Wir ersetzen den Reifen durch Punkte, die sich auf einer Kreisbahn bewegen, deren Durchmesser ohne Belang ist. Der gedachte Kreis spannt eine Ebene auf, auf der die Drehachse senkrecht steht.

Die Drehachse kann jetzt noch eine Richtung bekommen, das heißt, sie kann in eine Richtung oder auch entgegengesetzt zeigen. Wenn sich der Kreis vom Beobachter aus gesehen, im Uhrzeigersinn dreht, weist sein Blick in dieselbe Richtung wie die Richtung der Drehachse. Dies ist eine Vereinbarung (Definition). Siehe dazu auch Drehrichtung.

Bei Körpern, die sich frei im Raum drehen, z.B. Himmelskörpern, hängt die Rotationsachse in bestimmter Weise von der Massenverteilung im Körper ab. Wenn sich die Massenverteilung im Körper ändert, ändern sich im Allgemeinen auch die Rotationsachse des Körpers, aber genau so, dass der Drehimpuls erhalten bleibt (Drehimpulserhaltung).

Geometrie

Die Rotation eines Rechtecks bildet einen (vollen) Zylinder, Längsachse hier die x-Achse

Als Rotationsachse bezeichnet man bei einem Rotationskörper diejenige Gerade, um die man diesen drehen kann, ohne dass sich der Körper verändert. In diesem Fall ist die Rotationsachse gleichzeitig eine Symmetrieachse des Rotationskörpers. Man unterscheidet in diesem Fall zweizählige Drehachsen (Digyren), dreizählige Drehachsen (Trigyren), vierzählige Drehachsen (Tetragyren), fünfzählige Drehachsen (Pentagyren) und sechszählige Drehachsen (Hexagyren). Die Kombination von Drehung und Spiegelung führt zum Symmetrieelement der Drehspiegelachsen, diejenige von Drehung und Inversion zu den Drehinversionsachsen (Gyroiden).

Fahrzeugtechnik

Roll-Nick-Gier-Winkel (Eulerwinkel)

0 Rotationsachsen: Bewegung:
Längsachse (Roll-/Wankachse): Rollen, Wanken
Querachse (Nickachse): Nicken, Stampfen
Vertikalachse (Gierachse): Gieren (Schlingern)

In der Fahrzeugtechnik verwendet man drei wichtige Rotationsachsen der Bewegung:

Chemie

Drehachsen (blau markiert) in (v.l.n.r.) Wasser, Ammoniak, Xenonoxidtetrafluorid und Blausäure

Auch die Gestalt von Molekülen ist mit Symmetrieelementen beschreibbar. Diese geben an, durch welche Symmetrieoperationen das Molekül mit sich selbst zur Deckung gebracht werden kann. Da es sich bei Molekülen im Gegensatz zur Kristallstruktur um diskrete Objekte handelt, sind bei den Drehachsen prinzipiell alle Zähligkeiten möglich, z.B. eine fünfzählige Achse beim Ferrocen. Weiterhin gibt es die beliebige Zähligkeit in der Längsachse der Moleküle bei linearen Molekülen.

Im flüssigen Zustand, wo eine bedingte, und im gasförmigen Aggregatzustand eins Stoffes, wo eine freie Beweglichkeit der Moleküle vorliegt, können diese Drehachsen die Achsen realer Bewegungen sein.

Die Drehachsen werden in der Schoenflies-Symbolik mit C“ zyklisch bedeutet und der Index die Zähligkeit angibt. Lage, Anzahl und Zähligkeit der Drehachsen im Molekül beeinflussen in die Resultate der Schwingungs- und Rotationsspektroskopie.

Im Allgemeinen entspricht die Kristallsymmetrie eines Feststoffs nicht der Molekülsymmetrie seiner Bausteine. So besitzt das Wasser-Molekül eine zweizählige Drehachse, der Eiskristall jedoch eine sechszählige, was morphologisch in den hexagonalen Schneekristallen sichtbar wird.

Kristallographie

Kristallographie[Bearbeiten | Quelltext bearbeiten]

Kristallstruktur von Eis mit sechszähliger Drehachse

Obwohl die Bausteine eines Kristalls nahezu unbeweglich sind (abgesehen von den Schwingungen um ihre Ruhelage), sind die Drehachsen als Symmetrieelemente unabdingbar zur Beschreibung sowohl der makroskopisch sichtbaren Kristallformen als auch der inneren Anordnung der Kristallbausteine (Kristallstruktur) in der Kristallographie.

Bei einer – theoretisch räumlich unbegrenzten – Kristallstruktur treten nur Achszähligkeiten von 2, 3, 4 und 6 auf. Bei der Beschreibung von Punktgruppen bzw. Kristallklassen mit Hilfe der Hermann-Mauguin-Symbolik werden zweizählige Drehachsen beispielsweise mit „2“ und dreizählige Drehachsen mit „3“ bezeichnet. Zur Kennzeichnung der Raumgruppen wird die Drehung mit der Translation verknüpft, wodurch man kristallographische Schraubenachsen erhält.

Wegen der Achszähligkeiten hat ein Kristall niemals die Form eines Rotationskörpers. Die Hauptdrehachsen sind bei makroskopischen Kristallen meist sehr auffällig und bilden die Grundlage für die Klassifikation der Kristallsysteme. Bei mikrokristallinen Stoffen wird die Lage der Drehachsen mit Hilfe der Röntgenstrukturanalyse aufgeklärt.

 

Siehe auch

Trenner
Basierend auf einem Artikel in: externer Link Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung: Jena, den: 31.01. 2024