Gruppengeschwindigkeit

Die grünen Punkte bewegen sich mit Gruppengeschwindigkeit,
der rote mit Phasengeschwindigkeit.

Die Gruppengeschwindigkeit v_{{\mathrm  {g}}} ist die Geschwindigkeit, mit der sich die Hüllkurve (d.h. der Amplitudenverlauf) eines Wellenpakets fortbewegt:

{\displaystyle v_{\mathrm {g} }={\frac {\partial \omega }{\partial k}}}

also

Zusammenhänge

mit der Phasengeschwindigkeit

Über eine Fourier-Reihe kann man sich ein Wellenpaket als eine Überlagerung von Einzelwellen verschiedener Frequenzen vorstellen. Die Einzelwellen breiten sich jeweils mit einer bestimmten Phasengeschwindigkeit v_{{\mathrm  {p}}} aus, die angibt, mit welcher Geschwindigkeit sich Stellen konstanter Phase bewegen:

{\displaystyle v_{\mathrm {p} }={\frac {\omega }{k}}=\lambda \,f}

mit

Durch Einsetzen von {\displaystyle \omega =v_{\rm {p}}\cdot k} in die Definition der Gruppengeschwindigkeit ergibt sich nach Anwenden der Produktregel die Rayleighsche Beziehung:

{\displaystyle v_{\mathrm {g} }=v_{\mathrm {p} }+k{\frac {\mathrm {\partial } v_{\mathrm {p} }}{\mathrm {\partial } k}}}

Mit der Wellenlänge \lambda =2\pi /k lässt sie sich auch schreiben als:

{\displaystyle v_{\mathrm {g} }=v_{\mathrm {p} }-\lambda {\frac {\mathrm {\partial } v_{\mathrm {p} }}{\mathrm {\partial } \lambda }}}

mit der Dispersion

Die Dispersionsrelation \omega (k) beschreibt, wie \omega vonk abhängt:

{\displaystyle {\frac {\omega }{k}}=v_{\mathrm {p} }={\text{konst.}}}
{\displaystyle \Rightarrow {\frac {\partial v_{\mathrm {p} }}{\partial k}}={\frac {\partial v_{\mathrm {p} }}{\partial \lambda }}=0}
so ist die Gruppengeschwindigkeit identisch mit der Phasengeschwindigkeit:
{\displaystyle \Rightarrow v_{\mathrm {p} }=v_{\mathrm {g} }}
und die Form der Einhüllenden bleibt erhalten.
{\displaystyle {\frac {\omega }{k}}=v_{\mathrm {p} }={\text{f}}(f)\neq {\text{konst.}}\Rightarrow v_{\mathrm {p} }\neq v_{\mathrm {g} }}
liegt Dispersion vor. In diesem Fall verbreitert sich die Hüllkurve des Wellenpakets, während es sich ausbreitet, z.B. bei Signalen in Lichtwellenleitern.

mit der Signalgeschwindigkeit

in praktisch verlustfreien Medien

Oft stellt man sich die Gruppengeschwindigkeit als die Signalgeschwindigkeit v_{s} vor, mit der das Wellenpaket Energie oder Information durch den Raum transportiert:

{\displaystyle v_{s}=v_{g}}

Dies stimmt in den meisten Fällen, und zwar immer dann, wenn Verluste vernachlässigt werden können:

in verlustbehafteten Medien

In verlustbehafteten Medien ist die Signalgeschwindigkeit nicht identisch der Gruppengeschwindigkeit:

{\displaystyle v_{s}\neq v_{g}}

Bei Lichtpulsen in stark verlustbehafteten Medien kann die Phasengeschwindigkeit wesentlich größer sein als die Gruppengeschwindigkeit und sogar größer als die Lichtgeschwindigkeit c_{0} im Vakuum. Informationsübertragung mit Überlichtgeschwindigkeit ist jedoch nicht möglich, da hierfür die Frontgeschwindigkeit entscheidend ist, die niemals Überlichtgeschwindigkeit erreichen kann:

{\displaystyle v_{s}=v_{f}\leq c_{0}}

Die Frontgeschwindigkeit ist die Geschwindigkeit, mit der sich die Wellenfronten (d.h. Flächen gleicher Amplitude) und Diskontinuitäten der Welle bewegen. Sie ist definiert als Grenzwert der Phasengeschwindigkeit für unendlich große Kreiswellenzahl:

{\displaystyle v_{f}=\lim _{k\to \infty }v_{p}}
Trenner
Basierend auf einem Artikel in: externer Link Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de;
Datum der letzten Änderung: Jena, den: 07.09. 2021