Johann Peter Gustav Lejeune Dirichlet

deutscher Mathematiker

geboren: 13. Februar 1805 in Düren
gestorben: 5. Mai 1859 in Göttingen

1832 - Mitglied der Preußischen Akademie der Wissenschaften
1833 - Mitglied der Académie des sciences in Paris
1837 - Mitglied Russischen Akademie der Wissenschaften in St. Petersburg

Mit zwölf Jahren besuchte Dirichlet zunächst die Schule in Bonn. Zwei Jahre später wechselte er zum Marzellen-Gymnasium in Köln.
Im Mai 1822 begann er ein Mathematikstudium in Paris und traf dort mit den bedeutendsten französischen Mathematikern dieser Zeit – unter anderem Biot, Fourier, Francoeur, Hachette, Laplace, Lacroix, Legendre und Poisson – zusammen.

1825 machte er erstmals auf sich aufmerksam, indem er zusammen mit Adrien-Marie Legendre für den Spezialfall n = 5 die Fermatsche Vermutung bewies: Für n>2 existiert keine nichttriviale ganzzahlige Lösung der Gleichung a^n+b^n=c^n . Später lieferte er noch einen Beweis für den Spezialfall n = 14.
1827 wurde er von der Universität Bonn ehrenhalber promoviert und habilitierte sich 1827 – auf Empfehlung Alexander von Humboldts – als Privatdozent an der Universität Breslau.

1855 trat er in Göttingen als Professor der höheren Mathematik die Nachfolge von Carl Friedrich Gauß an. Diese Position hatte er bis an sein Lebensende 1859 inne.

Dirichlet forschte im Wesentlichen auf den Gebieten der partiellen Differentialgleichungen, der bestimmten Integrale und der Zahlentheorie. Er verknüpfte die bis dahin getrennten Gebiete der Zahlentheorie und der Analysis. Dirichletreihen sind als Verallgemeinerung der Betafunktion nach ihm benannt. Er gab Kriterien für die Konvergenz von Fourierreihen und bewies die Existenz von unendlich vielen Primzahlen in arithmetischen Progressionen, bei denen das erste Glied teilerfremd zur Differenz aufeinanderfolgender Glieder ist. Nach ihm benannt ist der dirichletsche Einheitensatz über Einheiten in algebraischen Zahlkörpern. Seine neue Art von Betrachtungen der Potentialtheorie wurden später von Bernhard Riemann verwendet und weiterentwickelt. Er beschäftigte sich auch mit mathematischer Physik (unter anderem Gleichgewichtsfiguren rotierender Flüssigkeiten). Das nach Dirichlet benannte Variationsprinzip wurde später von Ray William Clough (1920–2016) u. a. zur Grundlegung der Finite Elemente Methode (FEM) herangezogen. Seine Vorlesungen über Zahlentheorie wurden nach seinem Tod von Richard Dedekind herausgegeben und mit einem berühmten eigenen Anhang versehen. Dirichlet war zu seiner Zeit für die (nach damaligen Verhältnissen) Strenge seiner Beweise bekannt. Carl Gustav Jacobi schrieb in einem Brief an Alexander von Humboldt am 21. Dezember 1846: Wenn Gauß sagt, er habe etwas bewiesen, ist es mir sehr wahrscheinlich, wenn Cauchy es sagt, ist ebensoviel pro wie contra zu wetten, wenn Dirichlet es sagt, ist es gewiß.

Seitenende
Übersicht
Seite zurück
© biancahoegel.de; 
Datum der letzten Änderung:  Jena, den: 20.04. 2021