p-adische Zahl
Für jede Primzahl bilden die p-adischen Zahlen einen Erweiterungskörper des Körpers der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter Verwendung des Lokal-Global-Prinzips von Helmut Hasse, das – vereinfacht gesprochen – aussagt, dass eine Gleichung genau dann über den rationalen Zahlen gelöst werden kann, wenn sie über den reellen Zahlen und über allen gelöst werden kann (was aber nicht so allgemein zutrifft, für die genaue Bedeutung siehe dort). Als metrischer Raum ist vollständig und erlaubt so die Entwicklung einer -adischen Analysis analog zur reellen Analysis.
Motivation
Ist eine fest gewählte Primzahl, dann kann jede ganze Zahl in einer -adischen Entwicklung der Form
geschrieben werden (man sagt, die Zahl wird zur Basis notiert, siehe auch Stellenwertsystem), wobei die Zahlen aus sind. So ist etwa die 2-adische Entwicklung gerade die Binärdarstellung; zum Beispiel schreibt man:
Die bekannte Verallgemeinerung dieser Beschreibung auf größere Zahlmengen (rationale und reelle) ist die Zulassung unendlicher Summen am unteren Ende, d.h. der folgenden Form:
Diese Reihen sind konvergent bezüglich des gewöhnlichen Absolutbetrags. Zum Beispiel ist [1] die 5-adische Darstellung von zur Basis . In diesem System sind die ganzen Zahlen genau diejenigen, für die für alle gilt.
Man kann aber auch einen Konvergenzbegriff definieren, bei dem die Summen am anderen Ende ins Unendliche verlängert werden, und so Reihen der Form
-
(1)
erzeugen, wobei eine beliebige ganze Zahl ist. Auf diese Weise erhalten wir den Körper der -adischen Zahlen (in Gegenüberstellung zu den (reellen) Zahlen, die in einem (gewöhnlichen) -adischen Stellenwertsystem dargestellt sind). Diejenigen -adischen Zahlen, für die für alle gilt, heißen ganze -adische Zahlen. Analog zur gewöhnlichen -adischen Entwicklung kann man diese Reihen als (nach links unendlich fortgesetzte) Ziffernfolge schreiben:
-
- Bemerkung
- Die Konvention, die Auslassungspünktchen auf die linke Seite zu setzen, spiegelt zwar die Leserichtung, hat aber den Vorteil, dass endliche Symbolfolgen, die ja in beiden Fällen dieselbe Bedeutung haben, sich in der Notation nicht unterscheiden.
Die gewöhnliche -adische Entwicklung besteht also aus Summen, die sich nach rechts hin fortsetzen mit immer kleineren (negativen) Potenzen von , und die -adischen Zahlen haben Entwicklungen, die sich nach links hin fortsetzen mit immer größeren -Potenzen.[2]
Mit diesen formalen Laurent-Reihen in kann man rechnen wie mit den gewöhnlichen -adischen Entwicklungen reeller Zahlen: Addition von rechts nach links mit Übertrag, Multiplikation nach Schulmethode. Beachten muss man nur, dass sich Überträge ins Unendliche fortsetzen können, beispielsweise ergibt die Addition von und die Zahl . Ein Vorzeichen wird nicht gebraucht, da auch alle additiv Inversen ‒ negative Zahlen gibt es nicht ‒ eine -adische Darstellung (1) haben.
Des Weiteren lässt sich die Subtraktion nach Schulmethode von rechts nach links durchführen, unter Umständen mit einem unendlich oft auftretenden Rückübertrag (man versuche es bei ).
Die Division dagegen wird im Gegensatz zur Schulmethode auch von rechts nach links durchgeführt, dadurch wird das Ergebnis nach links fortgesetzt, falls die Division nicht aufgeht.
Es bleibt die Frage, ob diese Reihen überhaupt sinnvoll sind, d.h. ob sie in irgendeinem Sinne konvergieren. Zwei Lösungen dafür werden nun vorgestellt.
Konstruktion
Analytische Konstruktion
Die reellen Zahlen können konstruiert werden als Vervollständigung der rationalen Zahlen. Sie werden dabei aufgefasst als Äquivalenzklassen rationaler Cauchy-Folgen. Dies erlaubt uns zum Beispiel, die Zahl als oder als zu schreiben, da in gilt.
Jedoch hängt bereits die Definition einer Cauchy-Folge von der verwendeten Metrik ab, und indem man statt der üblichen euklidischen (archimedischen) Metrik, die vom Absolutbetrag erzeugt wird, eine andere Metrik benutzt, erhält man andere Vervollständigungen anstelle der reellen Zahlen.
p-adischer Betrag
Für eine fest vorgegebene Primzahl definieren wir den p-adischen Betrag auf : Jede rationale Zahl lässt sich in der Form schreiben mit einer eindeutig bestimmten ganzen Zahl und zwei natürlichen Zahlen und , die beide nicht durch teilbar sind. Wir setzen dann und . Dies ist ein nichtarchimedischer Betrag.
Zum Beispiel gilt für :
- für jede andere Primzahl
Im Sinne dieses Betrags sind große Potenzen von betragsmäßig klein. Damit wird auf den -adischen Zahlen ein diskreter Bewertungsring definiert.
Exponentenbewertung
Es ist häufig zweckmäßig (und in der Literatur üblich), für nichtarchimedische Bewertungen eine andere Bezeichnungsweise einzuführen. Anstelle des Betragswertes wählt man den Exponenten . Die Definitionsrelationen der Bewertung lauten in den Exponenten so:
- für .
- . [3]
- .
- .
Man spricht von einer Exponentenbewertung, manchmal auch p-Bewertung, und von einem exponentiell bewerteten Ring oder Körper. Der Übergang zu den Exponenten wird durch den Umstand ermöglicht, dass wegen der verschärften Dreiecksungleichung eine Addition der Werte nicht ausgeführt zu werden braucht. Die Logarithmenbildung kehrt die Anordnung um und verwandelt die Multiplikation in eine Addition.
Häufig normiert man so, dass ist für das Primelement .[4]
p-adische Metrik
Die p-adische Metrik auf definiert man über den Betrag:
Damit ist beispielsweise die Folge in bezüglich der 5-adischen Metrik eine Nullfolge, wohingegen die Folge beschränkt, aber keine Cauchy-Folge ist, denn für jedes gilt:
Die Vervollständigung des metrischen Raums ist der metrische Raum der -adischen Zahlen. Er besteht aus Äquivalenzklassen von Cauchy-Folgen, wobei zwei Cauchy-Folgen äquivalent seien, wenn die Folge ihrer punktweisen -adischen Abstände eine Nullfolge ist. Auf diese Weise erhält man einen vollständigen metrischen Raum, der außerdem (durch die wohldefinierten komponentenweisen Verknüpfungen der Cauchy-Folgen-Äquivalenzklassen) ein Körper ist, in dem enthalten ist.
Da die so definierte Metrik eine Ultrametrik ist, konvergieren Reihen bereits dann, wenn die Summanden eine Nullfolge bilden. In diesem Körper sind also die oben erwähnten Reihen der Form
sofort als konvergent zu erkennen, falls eine ganze Zahl ist und die in liegen. Man kann zeigen, dass sich jedes Element von als Grenzwert genau einer solchen Reihe (mit ) darstellen lässt.
Algebraische Konstruktion
Hier wird zuerst der Ring der ganzen -adischen Zahlen definiert, und danach dessen Quotientenkörper .
Wir definieren als projektiven Limes
der Restklassenringe : Eine ganze -adische Zahl ist eine Folge von Restklassen aus , die die Verträglichkeitsbedingung (des projektiven Limes)
erfüllen. Für jede ganze Zahl ist die (stationäre) Folge ein Element von . Wird auf diese Weise in eingebettet, dann liegt dicht in .
Die komponentenweise definierte Addition und Multiplikation sind wohldefiniert, da Addition und Multiplikation ganzer Zahlen mit der Restklassenbildung vertauschbar sind. Damit hat jede -adische ganze Zahl die additive Inverse und jede Zahl, deren erste Komponente nicht ist, hat eine multiplikative Inverse, denn in dem Fall sind alle zu teilerfremd, haben also ein Inverses modulo , und die Folge (welche außerdem die Verträglichkeitsbedingung des projektiven Limes erfüllt) ist dann die Inverse zu .
Jede -adische Zahl kann auch als Reihe der oben beschriebenen Form (1) dargestellt werden, dabei sind die Partialsummen gerade die Komponenten der Folge. Zum Beispiel kann man die -adische Folge auch als schreiben oder in der verkürzten Schreibweise als .
Der Ring der ganzen -adischen Zahlen ist nullteilerfrei, deshalb können wir den Quotientenkörper bilden und erhalten den Körper der -adischen Zahlen. Jedes von verschiedene Element dieses Körpers kann man in der Form darstellen, wobei eine ganze Zahl und eine Einheit in ist, also mit erster Komponente . Diese Darstellung ist eindeutig.
Ferner gilt
Einheiten
Die Menge der Einheiten wird häufig mit
bezeichnet und die Menge der Einseinheiten mit
Beides sind multiplikative Gruppen und es gilt
Eigenschaften
- Die Menge der ganzen -adischen Zahlen (und die Menge der -adischen Zahlen) ist überabzählbar. Das bedeutet, dass es nicht-rationale und nicht-algebraische, also transzendente Zahlen in gibt.
- ist ein vollständiger Körper.
- Der Körper der -adischen Zahlen enthält und hat deshalb Charakteristik , kann aber nicht angeordnet werden.
- Der topologische Raum der ganzen -adischen Zahlen ist ein total unzusammenhängender kompakter Raum, der Raum aller -adischen Zahlen ist lokalkompakt und total unzusammenhängend. Als metrische Räume sind beide vollständig.
- Die Primelemente von sind genau die zur Zahl assoziierten Elemente. Dies sind auch genau die Elemente, deren Betrag gleich ist; dieser Betrag ist der größte in vorkommende Betrag, der kleiner als ist. Die Primelemente von endlichen Erweiterungen von sind Teiler von .
- ist ein lokaler Ring, genauer ein diskreter Bewertungsring. Sein maximales Ideal wird von (oder einem beliebigen anderen Primelement) erzeugt.
- Der Restklassenkörper von ist der endliche Körper mit Elementen.
- (und ) enthält die -ten Einheitswurzeln Für sind das alle Einheitswurzeln; ihre Gruppe ist isomorph zu Für kommt noch die Einheitswurzel hinzu.
- Ist eine primitive -te Einheitswurzel in dann ist ein Monoid und als Ziffernsystem eine Alternative zu dem in (1) verwendeten System Zu jedem gibt es und mit und
-
- .
- Alle Ergebnisse sind eindeutig, ist dasselbe wie in (1).
- Die reellen Zahlen haben nur eine einzige echte algebraische Erweiterung, den Körper der komplexen Zahlen, der bereits durch Adjunktion einer Quadratwurzel entsteht und algebraisch abgeschlossen ist. Im Gegensatz dazu hat der algebraische Abschluss von einen unendlichen Erweiterungsgrad. hat also unendlich viele inäquivalente algebraische Erweiterungen.
- Die Metrik auf lässt sich zu einer Metrik auf dem algebraischen Abschluss fortsetzen, allerdings ist diese dann nicht vollständig. Die Vervollständigung des algebraischen Abschlusses bezüglich dieser Metrik führt zum Körper der bezüglich seiner Analysis etwa den komplexen Zahlen entspricht.
p-adische Funktionentheorie
Die Potenzreihe
der Exponentialfunktion hat ihre Koeffizienten in . Sie konvergiert für alle mit . Dieser Konvergenzradius gilt für alle algebraischen Erweiterungen von und deren Vervollständigungen, einschließlich
Damit liegt in für alle ; in liegt . Es gibt algebraische Erweiterungen von , in denen die -te Wurzel von bzw. die vierte Wurzel von liegt; diese Wurzeln könnte man als -adische Entsprechungen der Eulerschen Zahl auffassen. Diese Zahlen haben aber mit der reellen Eulerschen Zahl wenig zu tun.
Die Potenzreihe
für den Logarithmus konvergiert für .
In den Konvergenzgebieten gilt
und
- .
Dort gelten auch die aus der reellen und komplexen Analysis bekannten Funktionalgleichungen.
Funktionen von nach mit Ableitung sind konstant. Für Funktionen von nach gilt dieser Satz nicht; zum Beispiel hat die Funktion
- für ,
auf ganz die Ableitung , ist aber nicht einmal lokal konstant in . Dabei ist die Ableitung analog zum reellen Fall über den Grenzwert der Differenzenquotienten definiert, und die Ableitung in ist
- .
Unterschiede zu den archimedischen Systemen
Abgesehen von der anderen Konvergenz der -adischen Metrik gegenüber der unter Stellenwertsystem beschriebenen archimedischen Metrik gibt es noch folgende Unterschiede:
- Die -adischen Basen sind Primzahlen oder Primelemente, weil das maximale Ideal des (diskreten) Bewertungsrings ein Primideal (und Hauptideal) ist.
- Zu einer gegebenen Basis ist die Darstellung der Zahlen als unendliche Summe (1) eindeutig. Es gibt also keine Zahlen wie die endlichen Brüche bei manchen Stellenwertsystemen, für die es zwei Darstellungen als unendliche Summe gibt, wie bei in dargestellt zur Basis .
- Bei den Algorithmen
z.B. für die Grundrechenarten
laufen Potenzen und Überträge
in dieselbe (aufsteigende) Richtung von rechts nach links. Wird die Rechnung
abgebrochen, kann man sofort die Größe des Fehlers angeben.
Bei den Stellenwertsystemen kann man bei Brüchen, die in Bezug auf eine Basis eine endliche Darstellung haben, ebenfalls bei den niedrigen Potenzen beginnen und zu höheren Potenzen fortschreitend die Überträge einarbeiten.
Will man jedoch (bspw. bei irrationalen Zahlen) im Endlichen (links bei den hohen Potenzen) beginnen und zu kleinen Potenzen (d.h. zu großer Genauigkeit) fortschreiten, dann wirken die Überträge in die Gegenrichtung und es ist eine Fehlerabschätzung für das Sicherstellen der Richtigkeit der auszuwerfenden Ziffer erforderlich. - Ein Vorzeichen wie bei den reellen Zahlen gibt es nicht, auch keine „negativen“ Zahlen. Die Darstellung von als unendliche Summe (1) ist .
- Da für alle Primzahlen die Zahl in als Summe von Quadraten dargestellt werden kann, kann nicht angeordnet werden.
- Eine nichtarchimedische Metrik
definiert zu jedem
eine Äquivalenzrelation
. - Für und erhält man so einen Bewertungsring, wie einer ist, der für immer wenigstens eines, oder , enthält, aber nicht den ganzen Körper darstellt. Bei den archimedischen Systemen gibt es nichts Vergleichbares.
Approximationssatz
Sind Elemente von , dann gibt es eine Folge in , sodass für jedes (einschließlich ) der Grenzwert von in unter ist. (Diese Aussage wird manchmal Näherungssatz oder Approximationssatz genannt.)
Siehe auch
Anmerkungen
- ↑ a b Es gibt Autoren, die bei periodischen Darstellungen die Basis direkt neben das Komma auf diejenige Seite setzen, auf der sich die Reihe ins Unendliche fortsetzt, also: und bzw. .
- ↑ Konvergenz kann aber nur auf einer der beiden Seiten stattfinden, sodass die Entwicklung auf mindestens einer Seite endlich sein muss.
- ↑ Da jede Potenz von die 0 teilt, ist wie üblich für alle .
- ↑ So normiert entspricht die Exponentenbewertung der Ordnung einer formalen Potenzreihe in mit der Unbestimmten als Primelement.
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 18.03. 2023