Homöomorphismus

Beispiel: Visualisierung eines Homöomorphismus zwischen Cantor-Räumen. Homöomorphismus vom 3^{\omega } in den 2^\omega. Die Farben deuten an, wie Teilräume von Folgen mit einem gemeinsamen Präfix aufeinander abgebildet werden.

Ein Homöomorphismus (zuweilen fälschlicherweise auch Homeomorphismus in Anlehnung an den englischen Begriff homeomorphism, keinesfalls aber zu verwechseln mit Homomorphismus) ist ein zentraler Begriff im mathematischen Teilgebiet Topologie. Er bezeichnet eine bijektive, stetige Abbildung zwischen zwei topologischen Räumen, deren Umkehrabbildung ebenfalls stetig ist. Die Stetigkeitseigenschaft hängt von den betrachteten topologischen Räumen ab.

Zwei topologische Räume heißen homöomorph (auch topologisch äquivalent), wenn sie durch einen Homöomorphismus (auch topologische Abbildung oder topologischer Isomorphismus) ineinander überführt werden können; sie liegen in derselben Homöomorphieklasse und sind, unter topologischen Gesichtspunkten, gleichartig. Die Topologie untersucht Eigenschaften, die unter Homöomorphismen invariant sind.

Anschaulich kann man sich einen Homöomorphismus als Dehnen, Stauchen, Verbiegen, Verzerren, Verdrillen eines Gegenstands vorstellen; Zerschneiden ist nur erlaubt, wenn man die Teile später genau an der Schnittfläche wieder zusammenfügt.

Definition

X und Y seien topologische Räume. Eine Abbildung f\colon X\rightarrow Y ist genau dann ein Homöomorphismus, wenn gilt:

Homöomorphismen lassen sich wie folgt charakterisieren: Sind X und Y topologische Räume, so sind für eine bijektive, stetige Abbildung f\colon X\to Y äquivalent:

Beispiele

\begin{align}
 f\colon \left]0,1\right[ &\to \mathbb{R} \\
 x & \mapsto \tan \left(\left(x- \tfrac{1}{2}\right)\cdot \pi \right)
\end{align}

Bedeutung der Umkehrbarkeit

Die dritte Bedingung der Stetigkeit der Umkehrfunktion f^{-1} ist unerlässlich. Man betrachte zum Beispiel die Funktion

\begin{align}
f \colon \left[0, 2\pi\right[ &\to \mathbb{S}^1\\
x &\mapsto \left(\cos (x), \sin (x)\right)
\end{align}

Diese Funktion ist stetig und bijektiv, aber kein Homöomorphismus. Die Umkehrfunktion f^{-1} bildet Punkte nahe bei (1,0) auf weit voneinander entfernte Zahlen in der Nähe von {\displaystyle 0} und 2\pi ab; anschaulich würde der Kreis an der Stelle (1,0) zerrissen und dann flach abgerollt zum Intervall.

Beschränkt man sich auf bestimmte Arten topologischer Räume, dann folgt die Stetigkeit der Umkehrabbildung einer Bijektion f bereits aus der Stetigkeit von f. Zum Beispiel ist eine stetige Bijektion zwischen kompakten Hausdorff-Räumen bereits ein Homöomorphismus. Zum Beweis dieser Aussage dient der folgende

Satz
Wenn X ein kompakter und Y ein hausdorffscher topologischer Raum ist, dann ist jede stetige bijektive Abbildung f\colon X\to Y ein Homöomorphismus.
Beweis
Sei g\colon Y\to X die Umkehrabbildung und A\subseteq X abgeschlossen, es ist zu zeigen, dass g^{{-1}}(A) abgeschlossen ist. Als abgeschlossene Teilmenge eines Kompaktums ist A kompakt. Da stetige Bilder kompakter Mengen wieder kompakt sind, ist g^{{-1}}(A)=f(A) kompakt. Da kompakte Mengen in Hausdorffräumen abgeschlossen sind, ist g^{{-1}}(A) abgeschlossen, was den Beweis beendet.

Eigenschaften

Wenn zwei topologische Räume homöomorph sind, dann haben sie exakt dieselben topologischen Eigenschaften, das sind Eigenschaften, die sich ausschließlich durch die unterliegende Menge und den darauf definierten offenen bzw. abgeschlossenen Mengen ausdrücken lassen. Das liegt daran, dass ein Homöomorphismus definitionsgemäß eine Bijektion zwischen den unterliegenden Mengen und zwischen den Systemen offener Mengen ist. Beispiele solcher Eigenschaften sind Kompaktheit, Zusammenhang, Trennungseigenschaften und viele mehr. Der Nachweis, dass es sich um eine topologische Eigenschaft handelt, kann mitunter schwierig sein, insbesondere dann, wenn die ursprüngliche Definition zusätzliche Strukturen verwendet. Ein Beispiel einer solchen Eigenschaft ist Metrisierbarkeit, hier zeigt der Satz von Bing-Nagata-Smirnow, dass es sich um eine topologische Eigenschaft handelt. Eberlein-Kompaktheit ist ein weiteres nicht-triviales Beispiel.

Es gibt aber auch Eigenschaften gewisser Räume, die bei Homöomorphismen nicht erhalten bleiben, zum Beispiel die Vollständigkeit metrischer Räume. Die Ebene und die offene Kreisscheibe mit der Standardmetrik sind homöomorph bzgl. der durch die Metrik definierten Topologien, erstere ist vollständig, letztere hingegen nicht. Vollständigkeit ist daher keine topologische Eigenschaft, sie bleibt bei Homöomorphismen nicht erhalten.

Lokaler Homöomorphismus

Eine stetige Abbildung f zwischen topologischen Räumen X,Y heißt lokaler Homöomorphismus, falls für jeden Punkt a\in X eine offene Umgebung U \subseteq X von a existiert, so dass

Jeder Homöomorphismus ist ebenfalls ein lokaler Homöomorphismus, die Umkehrung gilt aber nicht, wie folgendes Beispiel zeigt: Die Abbildung f\colon {\mathbb  {C}}\setminus \left\{0\right\}\rightarrow {\mathbb  {C}},\,x\mapsto x^{2} ist nicht bijektiv, aber ein lokaler Homöomorphismus, da die Ableitung von f nirgends verschwindet.

Ist f außerdem surjektiv, so spricht man auch von einer lokal topologischen Abbildung.

Siehe auch

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 24.06. 2021