Freudenthalscher Einhängungssatz
Der Freudenthal'sche Einhängungssatz ist ein Satz aus dem mathematischen Teilgebiet der algebraischen Topologie, er bildet eine Grundlage für die stabile Homotopietheorie.
Die Aussage ist die folgende:
Sei und ein -zusammenhängender CW-Komplex. Dann ist die von der Einhängung induzierte Abbildung
für ein Isomorphismus und für surjektiv.
Für die stabilen Homotopiegruppen folgt daraus, dass
für ein Isomorphismus und für surjektiv ist.
Verallgemeinerung: Sei und ein -zusammenhängender CW-Komplex. Sei ein endlicher CW-Komplex mit für . Dann ist
für alle eine Bijektion zwischen den Mengen der Homotopieklassen.
Basierend auf einem Artikel in: Wikipedia.de Seite zurück© biancahoegel.de
Datum der letzten Änderung: Jena, den: 05.10. 2021