Satz von Stone-Weierstraß

Der Approximationssatz von Stone-Weierstraß (nach Marshall Harvey Stone und Karl Weierstraß) ist ein Satz aus der Analysis, der sagt, unter welchen Voraussetzungen man jede stetige Funktion durch einfachere Funktionen beliebig gut approximieren kann.

Satz

Jede Unteralgebra P der Funktionenalgebra A der stetigen reellwertigen oder komplexwertigen Funktionen auf einem kompakten Hausdorff-Raum M,

liegt bezüglich der Topologie der gleichmäßigen Konvergenz dicht in A.

Das bedeutet: Jede stetige Funktion von M in den Grundkörper {\mathbb  {K}} kann unter den angegebenen Voraussetzungen durch Funktionen aus P beliebig gut gleichmäßig approximiert werden.

Folgerungen

Historie

1885 veröffentlichte Weierstraß einen Beweis seines Satzes. Unabhängig davon fanden mehrere Mathematiker weitere Beweise, etwa Runge (1885), Picard (1891), Volterra (1897), Lebesgue (1898), Mittag-Leffler (1900), Fejér (1900), Lerch (1903), Landau (1908), de La Vallée Poussin (1912) und Bernstein (1912).

Verallgemeinerungen

Zum Approximationssatz von Stone-Weierstraß wurden mehrere Verallgemeinerungen gefunden, so etwa der Satz von Bishop. Mit beiden Sätzen eng verbunden ist das Lemma von Machado, mit dessen Hilfe eine verallgemeinerte Fassung des Approximationssatzes von Stone-Weierstraß hergeleitet werden kann, welche diesen auf beliebige Hausdorffräume und die dazu gehörigen Funktionenalgebren der im Unendlichen verschwindenden stetigen Funktionen ausdehnt.

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 21.01. 2021