Äquivalentdosis

Physikalische Größe
Name Äquivalentdosis
Formelzeichen H
Abgeleitet von Energiedosis D
Größen- und
Einheitensystem
Einheit Dimension
SI Sv L2·T−2

Die Äquivalentdosis ist eine Dosisgröße für Strahlenexpositionen durch ionisierende Strahlung. Sie wird im Strahlenschutz verwendet und ist ein Maß für die biologische Wirkung einer Exposition hinsichtlich stochastischer Risiken (Krebs und vererbbare Defekte) unter Berücksichtigung der Strahlenart. Grundlage ist die von der Strahlung übertragene Energie. Die unterschiedliche Wirksamkeit der beteiligten Strahlenarten bezüglich stochastischer Risiken wird durch Wichtungsfaktoren berücksichtigt. Maßeinheit der Äquivalentdosis ist das Sievert (Sv).

Überblick

Äquivalentdosis als Oberbegriff für Körperdosen sowie für Dosis­messgrößen bei äußerer Strahlen­exposition. Veranschaulicht wird die Ableitung aus der Energiedosis für eine Strahlenart. Liegen verschiedene Strahlen­arten vor, addieren sich die resultierenden Äquivalent­dosen. Dosis­messgrößen dienen bei praktischen Anwendungen mit äußerer Strahlen­exposition zur Abschätzung der nicht direkt messbaren Körperdosen.

Die Äquivalentdosis dient der Quantifizierung von stochastischen Strahlenrisiken beim Menschen. Dies geschieht in Form der Körperdosis (deutsches Strahlenschutzgesetz (StrlSchG), § 5 Abs. 19). Die Körperdosis ist ein Oberbegriff für die

Die Körperdosen sind Gegenstand gesetzlicher Regelungen und für sie werden Grenzwerte festgesetzt.

Körperdosen sind jedoch nicht messbar. Sie müssen aus Größen, die einer Messung zugänglich sind, abgeschätzt werden, in Verbindung mit Messvorschriften und Modellen.

Bei der äußeren Strahlenexposition werden zur Abschätzung von Körperdosen im praktischen Strahlenschutz Dosismessgrößen verwendet. Diese beziehen sich auf Messpunkte. Überwiegend handelt es sich um genormte Messverfahren nach Maßgaben der ICRU (siehe Abschnitt Äquivalentdosis bei äußerer Strahlenexposition).

Bei der inneren Strahlenexposition stützt sich die Abschätzung von Körperdosen auf Modellrechnungen der ICRP (siehe Abschnitt Äquivalentdosis als Körperdosis bei innerer Strahlenexposition).

Allen Verfahren zur Ermittlung von Äquivalentdosen ist gemeinsam, dass sie aus der Energiedosis durch Multiplikation mit Wichtungsfaktoren abgeleitet werden. Je nach Verfahren sind diese unterschiedlich definiert (siehe Abschnitt Wichtungsfaktoren).

Die nebenstehende Abbildung veranschaulicht diese, in den folgenden Abschnitten im Detail beschriebenen Zusammenhänge.

Wichtungsfaktoren

Die Wichtungsfaktoren sind dimensionslos. Physikalisch gleichen sich daher die Maßeinheiten von Energiedosis und der darauf aufbauenden Äquivalentdosis. Um den Unterschied kenntlich zu machen, wird die Maßeinheit der Äquivalentdosis mit „Sievert (Sv)“ bezeichnet im Gegensatz zur Maßeinheit „Gray (Gy)“ der Energiedosis. Einzelheiten zu den Maßeinheiten enthalten die Artikel Gray und Sievert (Einheit).

Bei gleicher Energiedosis unterscheiden sich die verschiedenen Strahlenarten (im Folgenden symbolisiert durch den Buchstaben R) in ihrer Wirkung zum Teil erheblich. So sind Alphateilchen bei gleicher Energiedosis um ein Vielfaches wirksamer als Photonen der Gammastrahlung oder Röntgenstrahlung und entsprechend höher ist ihr Wichtungsfaktor. Für die Ableitung des Wichtungsfaktors einer Strahlenart gibt es zwei Konzepte:

Bei äußerer Strahlenexposition

Dosismessgröße

Symbolisiert durch H_R ist die Äquivalentdosis einer Strahlenart eine Dosismessgröße zur Orts- und Personendosisüberwachung bei äußerer Strahlenexposition (vgl. deutsche Strahlenschutzverordnung (StrlSchV), Extern Anlage 18, Teil A). Zu ihrer Ermittlung wird als Wichtungsfaktor der Qualitätsfaktor Q_{R} der Strahlenart R verwendet. Er ist von der ICRU für ein standardisiertes Weichteilgewebe definiert. Die Werte können Extern Anlage 18, Teil D der StrlSchV entnommen werden.

Rechnerisch ergibt sich die Äquivalentdosis R durch Multiplikation der Energiedosis D_{R} (in Gy) mit dem Qualitätsfaktor Q_{R}.

{\displaystyle H_{R}=Q_{R}\cdot D_{R}}

Wirken mehr als eine Strahlenart R mit jeweils unterschiedlichen Energiedosen D_{R} und Qualitätsfaktoren Q_{R} zusammen, so addieren sich die jeweiligen Äquivalentdosen.

{\displaystyle H_{\text{gesamt}}=\sum _{R}H_{R}}

Wichtige Ausprägungen der Äquivalentdosis H_R als Dosismessgröße sind die

Die weitergehende Differenzierung dieser beiden Dosismessgrößen wird durch die Verfahren charakterisiert, die der Kalibrierung entsprechender Messgeräte bzw. Dosimeter zugrunde liegen. Bestimmend sind dabei die standardisierten Tiefen d der jeweiligen Messpunkte in Phantomen (u.a. die "ICRU-Kugel"), wo die von der Strahlung erzeugte Energiedosis gemessen wird. Der Vielfalt von Anwendungen in der Strahlenschutzpraxis angemessen erhält man

Körperdosis bei äußerer Strahlenexposition

Siehe auch: Effektive Dosis

Körperdosen sind bei äußerer Bestrahlung die Organ-Äquivalentdosis H_{T} und die effektive Dosis E.

Die Organ-Äquivalentdosis bezieht sich auf die über ein Organ oder Gewebe D_{T} der Strahlenart R, gewichtet mit dem Strahlungs-Wichtungsfaktor w_R. Dessen Werte können Extern Anlage 18, Teil C, Nr. 1 der StrlSchV entnommen werden.

H_{T}=w_{R}\cdot D_{{T,R}}

Wirken Strahlenarten R mit unterschiedlichen Werten für w_R und Energiedosen D_{{T,R}} auf das Organ T ein, so addieren sich die diesbezüglichen Äquivalentdosen.

H_{T}=\sum _{{R}}w_{R}\cdot D_{{T,R}}

Die effektive Dosis E ist die gewichtete Aufsummierung der Organ-Äquivalentdosen H_{T} der betroffenen Organe T. Dabei werden organabhängige Wichtungsfaktoren {\displaystyle w_{T}} verwendet, welche die relative Strahlenempfindlichkeit der Organe untereinander bzgl. stochastischer Schäden ausdrücken. Sie dürfen nicht mit den vorgenannten Faktoren Q_{R} und w_R verwechselt werden. Ihre Werte können der Extern Anlage 18, Teil C Nr. 2 der StrlSchV entnommen werden.

{\displaystyle E=\sum _{T}w_{T}\cdot H_{T}}

Wegen weiterer Einzelheiten siehe den Artikel effektive Dosis.

Ableitung der Körperdosis aus der Dosismessgröße

Die Ableitung von Körperdosen aus den Dosismessgrößen ist eine der maßgebenden Aufgaben im Strahlenschutz. Sie ist aber auf die äußere Strahlenexposition begrenzt, insbesondere auf die

Unter weniger günstigen Voraussetzungen müssen bei externer Strahlenexposition aus den Daten der Strahlenfelder in Verbindung mit geeigneten rechnergestützten Modellen und anthropomorphen Phantomen angepasste Konversionskoeffizienten entwickelt werden, mit denen Körperdosen aus Messgrößen abgeschätzt werden können.

Körperdosis bei innerer Strahlenexposition

Bei der inneren Strahlenexposition, d.h. bei der Bestrahlung durch Radionuklide, die dem Körper zugeführt und von ihm inkorporiert werden, tritt als Körperdosis an die Stelle der Organ-Äquivalentdosis und der effektiven Dosis die Folge-Organ-Äquivalentdosis bzw. die effektive Folgedosis. In diese Dosen, die für den Zeitpunkt der Zufuhr ermittelt werden, wird auch die künftige Exposition durch die im Körper verbleibenden Radionuklide eingerechnet.

Für die innere Strahlenexposition sind keine Dosismessgrößen definiert. Es müssen andere Messgrößen herangezogen werden, auch indirekte, wie Aktivitätsbestimmungen von Urin- und Stuhlproben.

Am einfachsten können Folgedosen mit Hilfe von Dosiskoeffizienten direkt aus den Daten der Zufuhr abgeschätzt werden. Dazu gehören neben dem Radionuklid und der zugeführten Aktivität I auch Daten zur chemischen und physikalischen Form des zugeführten radioaktiven Stoffs.

Die Dosiskoeffizienten {\displaystyle h_{T}(t)} für Folge-Organ-Äquivalentdosen und e(t) für die effektive Folgedosis sind eine Funktion der Zufuhrdaten und sie beziehen sich auf eine Integrationszeit t. Für Erwachsene beträgt die Integrationszeit 50 Jahre.

Die entsprechenden Äquivalentdosen ergeben sich einfach als Produkt der zugeführten Aktivität I (in Bq) mit dem einschlägigen Dosiskoeffizienten (in Sv/Bq).

{\displaystyle H_{T}=h_{T}(50)\cdot I}
{\displaystyle E=e(50)\cdot I}

In den Dosiskoeffizienten sind der Strahlungs-Wichtungsfaktor für das betrachtete Radionuklid sowie die biokinetischen Abläufe und Stoffwechselvorgänge berücksichtigt. Zusammenstellungen der Dosiskoeffizienten für die relevanten Radionuklide gibt es in Verbindung zur Strahlenschutzverordnung und als Publikationen der ICRP, wobei auch zwischen Koeffizienten für die Bevölkerung und für den beruflichen Bereich unterschieden wird.

Anwendungsbereich

Äquivalentdosen werden im Strahlenschutz in einem Dosisbereich bis zu einigen 100 mSv angewendet, wo stochastische Wirkungen bekanntermaßen auftreten oder (bei niedrigen Dosen) vermutet werden und wo deterministische Wirkungen noch nicht maßgebend sind. Bei deutlich höheren Dosen mit den dann maßgebenden deterministischen Wirkungen werden Strahlendosen allein in Form der Energiedosis in Gray (Gy) angegeben. Ein typischer Anwendungsbereich hierfür ist die Strahlentherapie.

Beispiele für Werte von Ortsdosisleistung und Körperdosis

Ortsdosisleistung

Die Ortsdosisleistung kann besonders einfach und schnell gemessen werden. In Berichten über Strahlenexpositionen wird sie daher oft an erster Stelle genannt. Folgende Tabelle soll eine Orientierungshilfe für die Bewertung solcher Angaben geben. Voraussetzung ist ein ausgedehntes homogenes und zeitlich konstantes Strahlungsfeld. Weitere Strahlenexpositionen, z.B. durch Inkorporation, sind zusätzlich zu berücksichtigen.

Ortsdosisleistung Bewertung
0000,08 µSv/h Mittlere natürliche Ortsdosisleistung in Deutschland. Bandbreite 0,05 bis 0,18 µSv/h.
0002,3 µSv/h Nach einem Notfall maßgebender Wert für die Zulassung einer Rückkehr in ein evakuiertes Gebiet (vgl. den oberen Referenzwert von 20 mSv pro Jahr beim Übergang zu „bestehenden“ Expositionssituationen gemäß § 118 Abs. 4 Satz 2 StrlSchG).
0003 µSv/h Untere Grenze des „Kontrollbereichs“ bei beruflicher Strahlenexposition (vgl. den entsprechenden Jahresgrenzwert von 6 mSv für die effektive Dosis gemäß § 52 Abs. 2 Nr. 2 StrlSchV auf Basis einer 40 Stundenwoche).
0025 µSv/h Grenze des Gefahrenbereichs im ABC-Einsatz in Deutschland (vgl. Abschnitt 2.3.2.1 FwDV 500).
0060 µSv/h Bei einem Notfall maßgebender Wert für die Schutzmaßnahme „Aufenthalt in Gebäuden“ (vgl. den entsprechenden Notfalldosiswert von 10 mSv in 7 Tagen gemäß § 2 NDWV).
0600 µSv/h Bei einem Notfall maßgebender Wert für die Schutzmaßnahme „Evakuierung“ (vgl. den entsprechenden Notfalldosiswert von 100 mSv in 7 Tagen gemäß § 4 NDWV).
3000 µSv/h Untere Grenze des „Sperrbereichs“ (siehe § 52 Abs. 2 Nr. 3 StrlSchV).

Körperdosis

Historisches

Der Begriff der Äquivalentdosis wurde für Dosismessgrößen und für Körperdosen bis 1991 allein unter Nutzung des Qualitätsfaktors w_R eingeführt. Unberührt blieben dabei die Verwendung und die Definition des Begriffs Äquivalentdosis für die Messgröße.

Die Äquivalentdosis wurde früher in Rem (roentgen equivalent man) angegeben. 1 Sv ist gleich 100 Rem.

Literatur

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 05.10. 2023