Blindleistungskompensation

Bei der Blindleistungskompensation (BLK), auch Blindstromkompensation genannt, wird in Wechselspannungsnetzen die unerwünschte Verschiebungsblindleistung und der damit verbundene Blindstrom von elektrischen Verbrauchern reduziert. Fast immer sind die Verbraucher (z.B. Elektromotoren) mehrheitlich induktiv, weshalb mit Kondensatoren kompensiert wird.

Grundlagen

Blindleistung und der dazu nötige Blindstrom werden zur Erzeugung elektrostatischer oder elektromagnetischer Felder benötigt. Da sich diese Felder im Takt der Wechselspannung kontinuierlich auf- und wieder abbauen, pendelt die Energie kontinuierlich zwischen Erzeuger und elektrischem Verbraucher. Diese kann nicht genutzt, bzw. nicht in eine andere Energieform umgewandelt werden. Diese Leistung belastet das Stromversorgungsnetz, auf dem der Blindstrom zusätzlich zum Wirkstrom transportiert werden muss, und die Generatoren oder den Transformator, in denen die Blindleistung erzeugt wird.

Nicht kompensierte Blindleistung bedingt größere (Synchron-)Generatoren. Bei hoher Blindleistung können zusätzliche, magnetisch übererregte Synchrongeneratoren nur zur Kompensation erforderlich werden. Die meisten Erzeuger sind Synchrongeneratoren, die im „Phasenschieber“-Betrieb Blindleistung kompensieren können, aber nur die wenigsten elektrischen Verbraucher sind mit kapazitiven Einrichtungen zur Blindleistungskompensation versehen.

Auch Stromleitungen verursachen Blindleistung, wobei dieser Effekt bei Freileitungen gering ist, bei Erdkabel und Seekabeln aufgrund der höheren Kapazität jedoch schnell ins Gewicht fallen kann.

Blindleistungskompensationsanlage, 75 kVAr

In größeren Anlagen kann die Summe der einzelnen Fehlanpassungen groß werden, und das allgemeine Stromnetz überlasten.

Übliche Energiezähler erfassen nur Wirkenergie. Daher werden vorrangig bei gewerblichen Großkunden spezielle Zähler zur Messung der Blindenergie installiert, um die resultierenden Kosten zuzuordnen.

Die dauernden Kosten rechtfertigen ab einer gewissen Größe die Installation eines gegenphasigen Verbrauchers, der Blindleistungskompensationsanlage. Diese wird am zentralen Einspeisepunkt zu allen induktiven Verbrauchern hinzugeschaltet. Dessen entgegenwirkende Blindleistung ist möglichst von gleicher Größe wie die installierte induktive Blindleistung. Diese Maßnahme wird Kompensation genannt.

Eine statische Anlage besteht aus fest eingebauten oder automatisch zugeschalteten Kondensatoren (aktive Blindleistungsfilter), die einen kapazitiven Blindstrom aufnehmen, der dem üblicherweise induktiven Blindstrom der Verbraucher entgegengesetzt gerichtet ist und ihn zu ca. 95 % aufhebt. Würde man die induktive Blindleistung vollständig kompensieren, würden sich die kapazitiven und induktiven Lasten nur für einen bestimmten Lastzustand aufheben, aber bei geringerer Last durch kapazitive Überkompensation wiederum das Netz belasten. Kapazitive Blindleistung ist im größeren Rahmen mit Überspannungen und regeltechnischen Schwierigkeiten verbunden, weshalb sie vermieden wird.

Theoretische Betrachtung

Elektrische Verbraucher im Niederspannungsnetz sind meist ohmsch-induktiv, d.h., die Verbraucher benötigen ein magnetisches Feld und beziehen dafür Blindleistung. Eine Blindleistungskompensation erfordert das Parallelschalten von Kapazitäten, die Blindleistung liefern. Eine Reihenschaltung mit dem Verbrauchsmittel ist nicht ratsam, da so ein Reihenschwingkreis entstehen würde, der nahe seiner Resonanzfrequenz einen Blindstrom-Kurzschluss ergibt.

Das gilt jedoch nicht für Geräte mit bekannten Daten, wo eine exakte Kompensation möglich ist (Beispiel: Duoschaltung bei Leuchtstoffröhren).

Blindleistung bei Strom ohne Oberschwingungen

Blindleistungskompensation eines ohmsch-induktiven Verbrauchernetzwerks von {\displaystyle \cos \varphi =0,8} auf {\displaystyle \cos \varphi _{\mathrm {k} }=0,95}. Der eingefügte Kondensator liefert die vom Verbraucher aufgenommene Blindleistung; Zeigerdarstellung in der gaußschen Ebene

Die folgende Betrachtung bezieht sich auf sinusförmige Spannung und auf Verbrauchsmittel mit sinusförmiger und daher oberschwingungsfreier Stromaufnahme. Durch die Kompensationsanlage pendelt der Blindstrom zum großen Teil nur zwischen Verbrauchsmittel und Kompensationsanlage. Das Versorgungsnetz wird entlastet; in nebenstehendem Diagramm ist der Zeiger für {\displaystyle I_{\mathrm {k} }} kürzer als für I.

Die für die Belastung des Versorgungsnetzes maßgebliche Größe der Scheinleistung S ist die pythagoreische Summe aus Wirkleistung P und Blindleistung Q. Diese sind gemäß DIN 40 110-1 folgendermaßen miteinander verknüpft:

{\displaystyle {\underline {S}}=P+\mathrm {j} \;Q}
S={\sqrt  {P^{2}+Q^{2}}}

Die Blindleistung des kompensierten Verbrauchers setzt sich aus der Blindleistung Q_{L} der Induktivitäten und jener der Kapazitäten Q_{C} zusammen.

Q=Q_{L}+Q_{C}\

Der induktive Blindstrom und der kapazitive Blindstrom sind um 180° in der Phase verschoben und haben somit entgegengesetzte Vorzeichen der Augenblickswerte. Entsprechend der Festlegung, dass für induktive Verbraucher der Phasenverschiebungswinkel φ positiv ist, ist auch Q_{L} positiv; umgekehrt sind bei kapazitiven Verbrauchern φ und Q_{C} negativ. Durch im Vorzeichen richtige Addition ist die Gesamtblindleistung stets geringer als jeder der Beträge der einzelnen Blindleistungen.

Zur vollständigen Kompensation des abgebildeten Netzwerks muss der Kondensator die Blindleistung für das induktive Netzwerk liefern. Die Kompensationsbedingung dafür ist {\displaystyle Q_{L}+Q_{C}=0}. Mit der für jeden passiven linearen Zweipol gültigen Blindleistungsformel {\displaystyle Q={\frac {U^{2}}{Z}}\sin \varphi } lautet die Bedingung {\displaystyle {\frac {U^{2}}{Z}}\sin \varphi +U^{2}\omega C\sin(-\pi /2)=0}. Darin bezeichnen Z und \varphi den (positiven) Scheinwiderstand und den Phasenverschiebungswinkel des unkompensierten Zweipols. Die passende Kapazität erhält man durch Auflösen der Gleichung zu

{\displaystyle C={\frac {\sin \varphi }{\omega Z}}}.

Mit diesem Kapazitätswert wirkt das Netzwerk rein ohmsch mit dem Eingangswiderstand {\displaystyle {\frac {Z}{\cos \varphi }}}.

Der Blindleistungsanteil wird in der Regel auf einen Leistungsfaktor {\displaystyle \lambda =P/S\ }, der in diesem Fall gleich \cos \varphi ist, von etwa

\cos \varphi =0{,}85\;\dots \;0{,}95 (induktiv)

kompensiert. Bei Motorenanlagen mit Asynchronmaschinen besteht ansonsten die Gefahr der Selbsterregung, wenn die Blindleistung vollständig kompensiert wird. Bei Selbsterregung wird der Motor mit dem Abklemmen der Stromversorgung zum Generator, und es können gefährliche Überspannungen entstehen. Dieser Fall wird auch als Resonanzfall bezeichnet.

Bei gleicher Wirkleistung {\displaystyle P=UI\cos \varphi } belastet ein Verbraucher die Versorgungsleitung mit einer im Verhältnis {\displaystyle \cos \varphi /\cos \varphi _{k}} verringerten Stromstärke, wenn seine Blindleistung gemäß dem Leistungsfaktor {\displaystyle \cos \varphi _{k}>\cos \varphi } kompensiert wird. Die Jouleschen Leitungsverluste gehen mit dem Quadrat dieses Verhältnisses zurück. Beispiel: Bei Erhöhung des Leistungsfaktors von {\displaystyle \cos \varphi =0,7} auf {\displaystyle \cos \varphi _{k}=0,9} nehmen die genannten Verluste um 40 % ab.

Ein anderer Ansatz geht über den Weg, die komplexe Verbraucherimpedanz \underline {Z} durch Hinzufügen einer Reaktanz rein reell zu machen, so dass \operatorname {Im}\{\underline {Z}\}=0 wird. Über diese Bedingung lässt sich dann auch die Dimensionierung des entsprechenden Kompensationsbauteils in Form einer homogenen Gleichung errechnen.

Eine vollständige Kompensation ist ferner aufgrund der schwankenden Belastung eines Verbrauchsmittels häufig nicht mit einfachen Kondensatoren oder Spulen durchführbar. Für diesen Zweck werden aktive Leistungsfaktorkorrekturglieder oder sog. „Netzmanagementsysteme“ verwendet, die jederzeit die benötigte Menge Blindleistung zur Verfügung stellen.

Bei besonders großen Mengen Blindleistung in Energieversorgungssystemen werden vereinzelt Blindleistungsgeneratoren verwendet. Diese sind Synchrongeneratoren, welche je nach Erregerzustand Blindleistung aufnehmen oder abgeben können. Man bezeichnet sie auch als rotierende Phasenschieber oder als Synchronphasenschieber.

Kompensationsanlagen in einem Umspannwerk
Umspannwerk S-Mühlhausen Kompensator.jpg
Drosselspule
Umspannwerk S-Mühlhausen Kompensationsdrosselspule.jpg
Kondensatoren

Aktueller Stand der Technik ist allerdings der Einsatz von statischen Blindleistungskompensatoren nahe am induktiven Verbraucher oder Leitungsabschnitt. Dies sind Kombinationen aus Kapazitäten und Induktivitäten, die parallel zur zu kompensierenden Last bzw. zum zu kompensierenden Netzabschnitt angeordnet sind. Dabei wird durch Thyristorventile der Stromfluss in den einzelnen Komponenten geregelt und somit der Grad der Blindleistungskompensation. Gegenüber dem rotierenden Phasenschieber hat dies den Vorteil, dass kein Verschleiß der Anlage stattfindet, außerdem ist durch einen statischen Kompensator ein dynamisches Regeln auf Lastschwankungen möglich.

Blindleistung bei Strom mit Oberschwingungen

Obige Beziehungen gelten nur bei sinusförmigem Verlauf der Spannungen und Ströme, was im Allgemeinen nur bei linearen Netzwerken der Fall ist. Sind in einer Schaltung nichtlineare Bauteile wie beispielsweise magnetisch sättigende Induktivitäten oder Netzteile mit Gleichrichtern vorhanden, so wird der Strom verzerrt, d.h., er enthält Oberschwingungen. Zusätzlich zur Blindleistung Q der Grundschwingung tritt eine Verzerrungsblindleistung D auf, welche die Blindleistungsanteile der Oberschwingungen zusammenfasst.

Die Blindleistungskompensation mittels parallel geschalteter Kompensationsfilter wie Kondensatoren ist nur bei einer Frequenz möglich, in der Regel bei der Frequenz der Grundschwingung wie der Netzfrequenz. Die Blindleistung der übrigen Schwingungen wird dabei über- oder unterkompensiert. Abhilfe bieten hierbei Leistungsfaktorkorrekturfilter, welche in Reihe mit dem nichtlinearen Verbraucher geschaltet werden und entweder die Oberschwingungen durch geeignete Filterstrukturen dämpfen oder durch elektronische Schaltungen künstlich einen sinusförmigen, der Grundschwingung der Spannung entsprechenden Stromverlauf auf Netzseite nachbilden. Dadurch kann der Leistungsfaktor auf einen Wert nahe 1 gebracht werden.

Beispiel

Kapazitive Blindleistung unkompensiert
Blindleistung kompensiert

Die nebenstehende Parallelschaltung aus einem Widerstand und einem Kondensator ist am 230-V-Stromnetz angeschlossen, bei 50 Hz fließen die angegebenen Ströme. Durch den Widerstand fließt 2,3 A Wirkstrom, durch den Blindstrom von 1,45 A muss die Anschlussleitung für den Gesamtstrom von 2,72 A bemessen sein. Zur Wirkleistung von 529 W kommt eine Blindleistung von 334 VAr hinzu, die aussagt, wie viel Energie pro Zeit zwischen Generator und Kondensator pendelt und Leitungen und Trafos unnötig belastet.

Zur Kompensation dieser Blindleistung wird eine passend gewählte Induktivität von 0,5 H parallel zum Gerät geschaltet, deren Blindstrom ebenfalls 1,45 A beträgt. Die Blindströme von Kondensator und Spule kompensieren sich auf Grund ihrer entgegengesetzten Phasenlagen, und die gesamte Stromaufnahme sinkt auf 2,3 A. Die Parallelschaltung aus Spule und Kondensator stellt im Idealfall einen Parallelschwingkreis dar, der bei 50 Hz keinen Blindstrom vom Generator aufnimmt. Wegen P = RLeitung·I² sinkt die Verlustleistung in den Zuleitungen auf 100 %·(2,3/2,72)² = 71 % des ursprünglichen Wertes.

Nutzen von Blindleistungskompensationsanlagen

Blindstrom verursacht ohmsche Verluste in Leitungen und Trafo. Die Verluste werden indirekt über die Netznutzungsentgelte an die staatlich regulierten Netzbetreiber bezahlt (Stromnetzentgeltverordnung).

Die Größe des Trafos bestimmt die maximal entnehmbare Scheinleistung. Ist der Anteil der Blindleistung hoch, kann entsprechend weniger Wirkleistung entnommen werden. Eine Kompensationsanlage erspart so eine Erweiterung von Trafo und eventuell Leitungen.

Bei Großabnehmern (Sondervertragskunden) wird die Blindenergie zusätzlich gemessen und in der Stromrechnung berechnet. Es besteht deshalb ein monetärer Anreiz, den Leistungsfaktor innerhalb gewisser Grenzen (z.B. 0{,}9<\lambda <1) zu halten. Mit einer Blindstromkompensationsanlage entfallen im Idealfall diese Mehrkosten.

Tonfrequenzsperren

Bei Anwendung der Blindstromkompensation in einem Netz mit Rundsteueranlage kann der Einsatz von Tonfrequenzsperren notwendig werden, um ein Abblocken der Rundsteuersignale aus dem Netz durch die Kompensationskondensatoren zu verhindern. Hierzu werden die Kondensatoren mit kleinen Drosseln versehen, die bei Netzfrequenz nahezu unwirksam sind.

Sonstiges

Der Generator moderner Windkraftanlagen („Windräder“) oder typische Wechselrichter von Photovoltaikanlagen sind vom Stromnetz über einen Gleichstromzwischenkreis vom Netz entkoppelt. So ist auch eine Regelung der Phasenverschiebung zwischen Spannung und Strom im eingespeisten Dreiphasenwechselstrom (Drehstrom) möglich. Diese Anlagen belasten das Netz nicht mehr mit Blindleistung, sie werden im Gegenteil sogar zur Blindleistungskompensation eingesetzt.

Literatur

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 19.12. 2021