IT-System (Elektrotechnik)

Ein IT-System (französisch Isolé Terre) ist eine bestimmte Realisierungsart eines Niederspannungsnetzes in der elektrischen Energieversorgung innerhalb einer Elektroinstallation. Wichtigstes Merkmal ist die Art der Erdverbindung an der Stromquelle und der elektrischen Betriebsmittel. Bei diesem Netz besteht keine galvanische Verbindung zwischen aktiven Leitern und geerdeten Teilen. Ein erster Fehler darf nicht zur Abschaltung der Stromversorgung führen.

Andere Realisierungsformen von Niederspannungsnetzen sind das TN-System und das TT-System.

Netzaufbau

IT-System ohne Neutralleiter

Das IT-Netz ist ein Netz, das nur eine geringe Ausdehnung besitzt. Die geringe Netzgröße ist erforderlich, da das Auffinden einer Fehlerstelle in einem ausgedehnten Netz sehr aufwendig sein kann. Das Netz muss über eine separate Stromversorgung aufgebaut sein. Die Stromversorgung kann entweder über einen Transformator, einen Generator oder über Batterien erfolgen. Es ist somit möglich, IT-Netze mit Wechselstrom oder mit Gleichstrom zu betreiben. Bei Drehstromnetzen ist es möglich, den Neutralleiter als vierten Leiter zu verwenden. In solchen Vierleiternetzen kann aufgrund von Spannungsanhebungen im Fehlerfall eine Überstromschutzeinrichtung für den Neutralleiter erforderlich sein. Das IT-Netz hat gute EMV-Eigenschaften, außerdem führt in diesem Netz ein einfacher Erdschluss nicht zur sofortigen Abschaltung des Netzes. Das IT-Netz ist einfehlersicher und hat eine wesentlich höhere Ausfallsicherheit als andere Netzformen wie TN- oder TT-Netze. IT-Systeme bieten hinsichtlich der Versorgungssicherheit die meisten Vorteile aller Netzformen.[7]

In bestimmten Bereichen, wie z.B. in Krankenhäusern, bestehen IT-Netze neben dem TN-Netz. Hierbei handelt es sich um Zweileiter-IT-Netze für die Versorgung von Wechselstromverbrauchern in besonders schutzbedürftigen Bereichen. In diesen Bereichen müssen die Steckdosen des IT-Netzes entsprechend gekennzeichnet oder mit unverwechselbaren Stecksystemen ausgerüstet sein. Die Leistung der Transformatoren in diesen medizinischen IT-Netzen ist auf 8 kVA begrenzt.

Erdung und Potentialausgleich

Beim IT-System werden die Schutzerdung und die Betriebserdung unterschiedlich ausgeführt. Die leitfähigen Gehäuse der Betriebsmittel sind im IT-System wie in einem TT-System oder TN-System geerdet. Alle leitfähigen, nicht zum Betriebsstromkreis gehörenden Körper müssen entweder einzeln oder gemeinsam geerdet werden, oder sie müssen gemeinsam mit der Erdung des Systems verbunden werden. Außerdem ist es zulässig, die leitfähigen Körper gruppenweise mit dem Schutzleiter zu verbinden. Die Erdung hat so zu erfolgen, dass die folgende Bedingung erfüllt ist:

R_{{\text{A}}}\cdot I_{{\text{d}}}\leq U_{{\text{L}}}

Dabei ist:

Die Betriebsspannungsquelle ist gegen Erde isoliert, d.h. offen – bei Gleichspannungsnetzen ist eine symmetrische hochohmige Erdung üblich. Es besteht im Normalbetrieb keine niederohmige Verbindung zwischen den aktiven Teilen des Netzes und Erde bzw. Schutzleiter. Wird das Netz aus einem Transformator gespeist, so ist der Sternpunkt des einspeisenden Transformators somit nicht geerdet.[6]

Aufgrund von Streukapazitäten ist der Widerstand des Netzes gegen Erde jedoch nicht unendlich, sondern erreicht Widerstandswerte, die im Kiloohmbereich liegen.

Personenschutz

Für den Personenschutz können folgende Schutzeinrichtungen eingesetzt werden:

Werden für den Personenschutz Isolationsschutzeinrichtungen eingesetzt, so entspricht dieser Schutz der früheren Schutzmaßnahme Schutzleitungssystem. Zum Erkennen von Isolationsfehlern werden Isolationsüberwachungseinrichtungen eingesetzt, die permanent den Widerstand der Außenleiter und des Neutralleiters gegen Erde messen und einen Isolationsfehler umgehend melden, sodass nicht notrelevante Aggregate kontrolliert abgeschaltet werden können. Werden Isolationsschutzeinrichtungen im IT-Netz verwendet, ist ein örtlicher Potentialausgleich zwingend vorgeschrieben.

Werden Überstromschutzeinrichtungen zur automatischen Abschaltung eingesetzt, müssen die Abschaltbedingungen gemäß DIN VDE 0100-410 eingehalten werden. Nachteilig ist beim Einsatz von Überstromschutzeinrichtungen, dass diese nur bei hohen Strömen ansprechen. Für geringe Fehlerströme sind Überstromschutzeinrichtungen nicht geeignet.

Beim Einsatz von RCD-Schutzeinrichtungen (veraltet FI) muss sichergestellt werden, dass die Schutzeinrichtung im Doppelfehlerfall mindestens einen Fehler abschaltet. Werden beim Einsatz von Ersatzstromerzeugern Stromkreise mit Nennströmen, die größer als 32 A sind, im IT-Netz betrieben, so muss jeder Stromkreis durch einen eigenen Fehlerstrom-Schutzschalter geschützt werden. Die Schalter müssen bei Fehlerströmen bis 30 mA abschalten.

Die Verwendung von FU-Schutzeinrichtungen ist im IT-Netz auf Sonderfälle beschränkt. Für den Einsatz von FU-Schutzeinrichtungen im IT-Netz gelten die gleichen Forderungen wie für den Einsatz im TT-Netz. Es gibt jedoch kaum praktische Anwendungsfälle, die den Einsatz von FU-Schutzeinrichtungen im IT-Netz erforderlich machen.

Fehlerfall

Einen ersten Isolationsfehler zwischen einem Außenleiter und der Erde stellt eine Erdung dieses Leiters dar. Es besteht dann weiterhin weder ein Potentialunterschied zwischen leitfähigen Gehäusen und der Erde noch ein über die Erde geschlossener Stromkreis zum Transformator. Da keine Potentialunterschiede auftreten, tritt auch keine Berührungsspannung zwischen den berührbaren Gehäuseteilen und der Erde auf. Das IT-Netz geht in diesem Betriebszustand quasi in die Unsymmetrie eines TN- oder TT Netzes über. Es fließt jedoch ein wesentlich geringerer Fehlerstrom. Der Fehlerstrom verteilt sich auf alle Abgänge und fließt in den beiden anderen Außenleitern zurück. Der Rückfluss erfolgt aufgrund des isolierten Netzes über die Leiter-Erde-Kapazitäten der „gesunden“ Außenleiter. Die Höhe dieses kapazitiven Fehlerstromes ist von der Größe der Erdkapazitäten abhängig. Je größer das Netz ausgedehnt ist, desto größer sind die Erdkapazitäten und umso größer ist folglich der Fehlerstrom. Durch den Erdschluss kommt es zu einer Spannungsüberhöhung der beiden „gesunden“ Phasen gegenüber Erde. Die Außenleiterspannungen gegen Erde steigen auf den {\sqrt {3}}-fachen Wert an. Die Spannung gegen Erde gleicht nun der Spannung zwischen zwei Außenleitern. Durch die Spannungserhöhung wird die Isolation der Leitungen stärker beansprucht. Da alle aktiven Teile die gleiche Potentialänderung erfahren, kann die Anlage trotzdem zunächst gefahrlos weiter betrieben werden. Der Fehler sollte aber wegen der Spannungsüberhöhung und der (zwar geringen) Wahrscheinlichkeit eines weiteren Fehlers rasch behoben werden.

Einpolige Fehler sind mit einer Wahrscheinlichkeit, die über neunzig Prozent liegt, die am häufigsten auftretende Fehlerart. Obwohl die Wahrscheinlichkeit für das Auftreten eines zweiten Fehlers unter zehn Prozent liegt, können im geringen Umfang zweipolige Fehler auftreten. In diesem Fall tritt ein weiterer Erdschluss durch einen anderen aktiven Leiter auf und erzeugt somit einen Doppelfehler. Aufgrund dieses Doppelfehlers treten erheblich höhere Fehlerströme auf. Bei zwei satten Erdschlüssen kommt es zu einem Kurzschluss, welcher nur dann ungefährlich ist, wenn er durch die Überstromschutzeinrichtungen sofort abgeschaltet wird. Bei Auftreten eines Doppelfehlers muss im IT-System eine automatische Abschaltung erfolgen. Da im ungünstigen Fall der doppelte Schleifenwiderstand wirkt, müssen die Überstromabschaltorgane (Leitungsschutzschalter) bzw. die Leiterquerschnitte bei IT-Netzen kritischer bemessen sein als bei geerdeten Netzen. Bei Ersatzstromerzeugern kann auf die Abschaltung verzichtet werden, wenn die Spannung zwischen den Anschlussklemmen auf unter 50 Volt sinkt.

Fehlersuche

Eine Einrichtung zur Isolationsfehlersuche ist ein Gerät oder eine Kombination von Geräten zur Isolationsfehlersuche in IT-Systemen und wird zusätzlich zu einem Isolationsüberwachungsgerät eingesetzt. Sie prägt einen Prüfstrom zwischen den spannungsführenden Leitern und Erde ein und lokalisiert Isolationsfehler. Mittels Einrichtungen zur Isolationsfehlersuche (IFLS) können Isolationsfehler im laufenden Betrieb oder abgeschalteten Zustand lokalisiert werden. Dazu stehen Geräte zur stationären Installation und mobile Geräte zur Verfügung.

Eine Einrichtung zur Isolationsfehlersuche (IFLS, Insulation Fault Location System) besteht in der Regel aus einem Isolationsüberwachungsgerät (IMD, Insulation Monitoring Device) mit integriertem Prüfstromgenerator (LCI, Locating Current Injector), einem Isolationsfehlersuchgerät (IFL, Insulation Fault Locator) und Wandlern (LCS, Locating Current Sensor).

Einsatz

Man setzt diese Netzart in Operationssälen von Krankenhäusern ein, da hier eine Unterbrechung der Stromversorgung eine Lebensgefahr für den Patienten darstellen würde. Aber auch in Intensivstationen werden IT-Netze verwendet. Des Weiteren finden IT-Netze in Industrieanlagen ihre Anwendung, wenn eine Abschaltung der Stromversorgung zu einer Unterbrechung des Produktionsprozesses führen würde und dadurch einen wirtschaftlichen Schaden verursachen würde. Dies ist beispielsweise bei der Glasproduktion und in der chemischen Industrie der Fall. Aber auch bei der Energieversorgung in explosionsgefährdeten Bereichen, beispielsweise dem untertägigen Steinkohlenbergbau und in Hüttenwerken, werden IT-Netze verwendet. Weitere Anwendungsgebiete sind Ersatzstromversorgungen auf Schiffen und bei Einsätzen der Feuerwehr. Auch bei der Stromversorgung von Pumpen der Grundwasserhaltung werden IT-Netze verwendet. Gleichspannungs-Ladestationen für Elektrofahrzeuge werden von IT-Systemen gespeist. Bei der Installation von Wohnräumen findet das IT-System keinerlei Anwendung.

Grenzen des IT-Netzes

Zunächst einmal würde man davon ausgehen, dass durch die Isolation des Sternpunktes selbst im 1. Fehlerfall die betroffene Person nicht von einem Strom durchflossen wird, ein 1. Fehler also absolut ungefährlich ist. Bei genauerer Betrachtung fällt jedoch auf, dass sehr wohl ein Stromfluss zustande kommt. Berührt die Person nämlich z.B. Außenleiter L1, dann stellt sie einen Widerstand von mindestens 1 kΩ zur Erde her. Andererseits befinden sich aber zwischen den Außenleitern L2 und L3 und der Erde auch kleine Kapazitäten, die als kapazitiver Widerstand wirken. Somit hat man einen geschlossenen Stromkreis von L1 über die Person über die Erde und zurück über die Kapazität der Erde zu L2 und L3. Je größer die Kapazität von L2 und L3 zur Erde ist, desto größer wird auch der Strom; in diesem Fall heißt dies: Je länger die Leitung wird, desto größer auch die Kapazität und damit der Stromfluss. Genau hier liegt die Grenze des IT-Netzes: Ist die Netzgröße sehr klein, dann sind auch die Kapazitäten der Außenleiter zur Erde so klein, dass ein 1. Fehler gefahrlos ist. Würde man das Netz aber ausdehnen, dann kann die Kapazität der Außenleiter zur Erde so groß werden, dass die Ströme in gefährlichen Größenordnungen auftreten können.

Normen

Richtlinien

Literatur

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 24.08. 2024