Global Positioning System
Global Positioning System (GPS), offiziell NAVSTAR GPS, ist ein globales Navigationssatellitensystem. Es wurde seit den 1970er-Jahren vom US-Verteidigungsministerium entwickelt und löste ab etwa 1985 das alte Satellitennavigationssystem NNSS (Transit) der US-Marine ab, ebenso die Vela-Satelliten zur Ortung von Atombombenexplosionen. GPS ist seit Mitte der 1990er-Jahre voll funktionsfähig und stellt seit der Abschaltung der künstlichen Signalverschlechterung (Selective Availability) im Mai 2000 auch für zivile Zwecke eine Ortungsgenauigkeit in der Größenordnung von 10 Meter sicher. Die Genauigkeit lässt sich durch Differenzmethoden auf Zentimeter steigern, für spezielle Anwendungen in der Geodäsie lassen sich auch noch genauere Messungen erzielen. GPS hat sich als das weltweit wichtigste Ortungsverfahren etabliert und wird in Navigationssystemen weitverbreitet genutzt.
Die offizielle Bezeichnung ist ""Navigational Satellite Timing and Ranging - Global Positioning System" (NAVSTAR GPS). NAVSTAR wird manchmal auch als Abkürzung für "Navigation System using Timing and Ranging" genutzt. GPS wurde am 17. Juli 1995 offiziell in Betrieb genommen.
Für die zentrale Kontrolle des GPS ist die 50th Space Wing des Air Force Space Command (AFSPC) der US Air Force auf der Schriever AFB, Colorado zuständig.
Die Abkürzung GPS ist inzwischen so sehr etabliert, dass sie umgangssprachlich, zum Teil sogar fachsprachlich, als generische Bezeichnung oder pars pro toto für alle Satellitennavigationssysteme benutzt wird. Letztere werden aber unter dem Kürzel GNSS (Global Navigation(al) Satellite System) zusammengefasst.
Einsatzbereiche
GPS ist primär zur Positionsbestimmung und Navigation im militärischen Bereich (in Waffensystemen, Kriegsschiffen, Flugzeugen) usw. vorgesehen. Ein Vorteil ist dabei, dass GPS Empfänger nur Signale empfangen und nicht senden. So kann navigiert werden ohne dass der Feind Informationen über den eigenen Standort erhält. Heute wird es auch im zivilen Bereich genutzt: in der Seefahrt, Luftfahrt, durch Navigationssysteme im Auto, zur Orientierung im Gelände, im Vermessungswesen etc.
Gesendete Daten
Das Datensignal mit einer Datenrate von 50 bit/s und einer Rahmenperiode von 30 s wird parallel mittels Spread Spectrum Verfahren auf zwei Frequenzen ausgesendet:
- Auf der L1-Frequenz (1575,42 MHz) werden der C/A-Code ("Coarse/Acquisition") für die zivile Nutzung, und orthogonal dazu der nicht öffentlich bekannte P/Y-Code ("Precision/encrypted") für die militärische Nutzung eingesetzt. Das übertragene Datensignal ist bei beiden Codefolgen identisch und stellt die 1500 Bit lange Navigationsnachricht dar. Sie enthält alle wichtigen Informationen zum Satelliten, Datum, Identifikationsnummer, Korrekturen, Bahnen, aber auch den Zustand, und benötigt zur Übertragung eine halbe Minute. GPS-Empfänger speichern diese Daten normalerweise zwischen. Zur Initialisierung der Geräte werden des Weiteren auch die so genannten Almanach-Daten übertragen, die die groben Bahndaten aller Satelliten enthalten und zur Übertragung über zwölf Minuten benötigen.
- Die zweite Frequenz L2-Frequenz (1227,60 MHz) überträgt nur den P/Y-Code. Wahlweise kann auf der zweiten Frequenz auch der C/A-Code übertragen werden. Durch die Übertragung auf zwei Frequenzen können ionosphärische Effekte, die zur Erhöhung der Laufzeit führen, herausgerechnet werden, was die Genauigkeit steigert.
- Momentan ist eine dritte L5-Frequenz (1176,45 MHz) im Aufbau. Sie soll die Robustheit des Empfangs weiter verbessern und ist vor allem für die Luftfahrt und Safety-of-Life-Anwendungen vorgesehen. Bei der derzeitigen Geschwindigkeit des Ausbaus ist mit einer Fertigstellung ab 2010 und einem Regelbetrieb ab 2013 zu rechnen.
Der Satellit besitzt einen Empfänger für den Uplink im S-Band (1783,74 MHz up, 2227,5 MHz down).
Aufgaben
Die GPS-Satelliten sind Teil des US-Programms Nuclear Detection System (NDS), früher Integrated Operational Nuclear Detection System (IONDS) genannt, eingebunden in das Verteidigungsprogramm DSP (Defense Support Program). Sie verfügen über Sensoren für Infrarot- und Gammastrahlung und ebenso Detektoren für EMP. Damit sollen sie Atombombenexplosionen und Starts von Interkontinentalraketen mit einer Ortsauflösung von 100 m registrieren. Das GPS hat dabei das Vela-System abgelöst.
Eine weitere Aufgabe des GPS Systems besteht in der Bereitstellung eines einheitlichen Zeitsystems. Die von einem GPS-Empfänger empfangene Zeit ist zunächst die GPS-Zeit. In der Satellitennachricht ist aber auch die Abweichung zwischen GPS-Zeit und Koordinierter Weltzeit (UTC) angegeben. Mit der Genauigkeit der GPS-Zeit und der Angabe der Abweichung garantiert das System eine Abweichung von UTC um maximal eine Mikrosekunde, wenn die Laufzeit auch so genau bestimmt wird.
Geschichte
Ab 1958 von der US-Marine das erste Satellitennavigationssystem Transit entwickelt. Zunächst unter der Bezeichnung Navy Navigation Satellite System (NNSS) wurde es ab 1964 militärisch zur Zielführung ballistischer Raketen auf U-Booten und Flugzeugträgern und ab 1967 auch zivil genutzt und ist seit dem 31. Dezember 1996 außer Betrieb. Seine Sendefrequenzen lagen bei 150 und 400 MHz und es erreichte eine Genauigkeit zwischen 500 und 15 m.
Das GPS-Programm wurde mit der Gründung des JPO (Joint Program Office) im Jahre 1973 gestartet. Der erste GPS-Satellit wurde 1978 vom Vandenberg-Startplatz SLC-3E mit einer Atlas F Rakete in eine Umlaufbahn in 20.200 km Höhe und 63° Bahnneigung geschossen. 1985 startete der letzte Satellit dieser Generation mit einer Atlas E Rakete von der Vandenberg-Startrampe SLC-3W. Mit Einführung der GPS II Serie (1989) wechselte man nach Cape Canaveral und startete von der Startrampe LC-17 mit Delta-6925-Raketen. Die Serien GPS IIA - GPS IIR-M folgten mit Delta-7925-Raketen. Die Inklination wurde bei Starts von Cap Canaveral unter Beibehaltung der Bahnhöhe auf 55° verringert. Im Dezember 1993 wurde die anfängliche Funktionsbereitschaft (Initial Operational Capability) festgestellt. Zu diesem Zeitpunkt waren 24 Satelliten im Einsatz. Die volle Funktionsbereitschaft (Full Operational Capability) wurde im April 1995 erreicht und am 17.Juli 1995 bekanntgegeben. Die (zukünftige) GPS IIF-Serie besitzt keinen Feststoff-Apogäumsmotor mehr sondern wird von ihren Delta IV oder Atlas V Trägerraketen direkt im GPS-Orbit ausgesetzt statt auf einer Transferbahn, wie es bis zu GPS IIR-M Serie üblich war.
Um nicht-autorisierte Benutzer (potentielle militärische Gegner) von einer genauen Positionsbestimmung auszuschließen, wurde die Genauigkeit für Benutzer, die nicht über einen Schlüssel verfügen, künstlich verschlechtert (Selective Availability = SA, mit einem Fehler von größer 100 m). SA musste in den Block-II-Satelliten implementiert werden, weil der C/A-Dienst deutlich besser als ursprünglich erwartet war. Es gab aber fast immer vereinzelte Satelliten, bei welchen SA nicht aktiviert war, sodass genaue Zeitübertragungen möglich waren.
Am 2. Mai 2000 wurde diese künstliche Ungenauigkeit der Satelliten abgeschaltet, ab ca. 4:05 Uhr UTC sendeten alle Satelliten ein SA-freies Signal. Seitdem kann das System auch außerhalb des bisherigen exklusiven Anwendungsbereichs zur präzisen Positionsbestimmung genutzt werden. Dies führte unter anderem zum Aufschwung der Navigationssysteme in Fahrzeugen und im Außenbereich, da der Messfehler nun in mindestens 90% der Messungen geringer als 10 m ist.
Am 25. September 2005 brachte eine Delta-II-Rakete den ersten GPS-Satelliten der Baureihe GPS 2R-M (Modernized) in den Weltraum. Die Antenne wurde verbessert und das Sendespektrum um eine zweite zivile Frequenz und zwei neue militärische Signale erweitert. Seit Dezember 2005 im Einsatz, erweiterte der neue Satellit die Flotte der funktionstüchtigen Satelliten auf 28. Momentan sind 32 Satelliten aktiv (Stand Juni 2008). Am 17. August 2009 startete mit GPS 2R-M8 der letzte GPS Satellit dieser Serie mit einer Delta II-Rakete erfolgreich in seine Transferbahn.
Im Mai 2010 soll eine Delta IV Medium+ (4,2) den ersten GPS IIF-1 Satelliten in den GPS Orbit bringen.
Das Pentagon autorisierte die United States Air Force am 9. Mai 2008, die ersten acht Satelliten der dritten Baureihe zu bestellen. Für Entwicklung und Bau wurden 2 Mrd. US-Dollar bereitgestellt. Die dritte Generation wird aus insgesamt 32 Satelliten bestehen und soll ab 2014 das GPS-II-System ersetzen. Sie unterscheiden sich durch eine erhöhte Signalstärke und weitere Maßnahmen, um eine Störung der Signale zu erschweren. Lockheed Martin und Boeing konkurrierten um den Auftrag, mit dem automatisch auch die nachfolgenden 24 Satelliten verbunden sein sollte. Am 15. Mai 2008 gewann Lockheed-Martin den Auftrag zum Bau der ersten zwei GPS IIIA Satelliten. Inzwischen soll der Auftrag auf acht Satelliten aufgestockt worden sein.
Seite zurück
© biancahoegel.de;
Datum der letzten Änderung: Jena, den: 13.11. 2018