Fortsetzung (Mathematik)

Die Fortsetzung einer Abbildung ist ein Begriff aus der Mathematik, der insbesondere in der Analysis und der Topologie verwendet wird. Unter einer Fortsetzung einer Abbildung versteht man eine weitere Abbildung, die auf einer Teilmenge ihres Definitionsbereichs mit der gegebenen Abbildung übereinstimmt. Von besonderem Interesse ist es, ob es Fortsetzungen zu stetigen beziehungsweise analytischen Funktionen gibt, die ebenfalls stetig beziehungsweise analytisch sind.

Definition

Seien X,\,Y und A Mengen. Eine Abbildung f\colon X\to Y heißt Fortsetzung der Abbildung g\colon A\to Y genau dann, wenn A eine Teilmenge von X ist und g(x)=f(x) für alle x\in A gilt.

Stetige Fortsetzung

Definition

Seien X und Y topologische Räume, A\subset X ein Teilraum von X und g\colon A\to Y eine stetige Abbildung. Eine Abbildung f\colon X\to Y heißt, analog zu obiger Definition, stetige Fortsetzung von g, falls f stetig ist und g(x)=f(x) für alle x\in A gilt.

Beispiele

{\displaystyle f(x)={\begin{cases}{\frac {x}{x}}+5x&\mathrm {f{\ddot {u}}r} \ x\in \mathbb {R} \setminus \{0\},\\1&\mathrm {f{\ddot {u}}r} \ x=0\,.\end{cases}}}
Hier wird die Funktion auf einen weiteren Punkt fortgesetzt und man spricht in diesem speziellen Fall auch von einer stetig behebbaren Definitionslücke.
{\displaystyle f(x)={\begin{cases}{\frac {1}{x}}\sin(x)&\mathrm {f{\ddot {u}}r} \ x\in \mathbb {R} \setminus \{0\},\\1&\mathrm {f{\ddot {u}}r} \ x=0\,\end{cases}}}
eine stetige Fortsetzung von g.

Fortsetzungssatz von Tietze

Hauptartikel: Fortsetzungssatz von Tietze

Der Fortsetzungssatz von Tietze charakterisiert topologische Räume, in denen stetige Funktionen auf abgeschlossenen Teilmengen immer stetig fortgesetzt werden können. Es sind genau die normalen topologischen Räume, in denen das immer möglich ist. Der Satz kann als Verallgemeinerung des Lemmas von Urysohn verstanden werden. Eine Folgerung des Fortsetzungssatzes von Tietze ist das Fortsetzungslemma.

Lipschitz-stetige Funktionen

Stetige Abbildungen {\displaystyle U\rightarrow \mathbb {R} ^{m}}, wobei {\displaystyle U\subset \mathbb {R} ^{n}}, können die stärkere Eigenschaft der Lipschitz-Stetigkeit haben. Daher stellt sich die Frage, ob man die stetigen Fortsetzungen auch so wählen kann, dass die Lipschitz-Stetigkeit erhalten bleibt. Der Satz von Kirszbraun sagt aus, dass dies sogar mit Erhaltung der Lipschitz-Konstanten möglich ist. Das Lemma von McShane dehnt diese Aussage auf allgemeinere Raumklassen aus.

Periodische Fortsetzung

Hauptartikel: Periodische Fortsetzung

Eine andere Möglichkeit eine Funktion systematisch fortzusetzen ist die periodische Fortsetzung. Dabei wird eine auf einem beschränkten Intervall definierte Funktion so fortgesetzt, dass sich ihre Funktionswerte außerhalb des Ausgangsintervalls mit festem Abstand zyklisch wiederholen. Eine solche Funktion wird periodisch genannt.

Einschränkung

Hauptartikel: Einschränkung

Das zur Fortsetzung von Funktionen gegenteilige Konzept ist die Einschränkung des Definitionsbereichs einer Abbildung.

Siehe auch

Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 26.06. 2020