Äquivalente Normen

Als äquivalente Normen bezeichnet man in der Mathematik ein Paar von abstrahierten Abstandsbegriffen, sogenannten Normen, die identische Konvergenzbegriffe erzeugen. Etwas detaillierter unterscheidet man in stärkere Normen (synonym auch feinere Normen genannt) und schwächere Normen (synonym auch gröbere Normen genannt) und nennt zwei Normen äquivalent, wenn sie sowohl stärker als auch schwächer als ihr Konterpart sind.

Definition

Gegeben sei ein Vektorraum X über {\displaystyle \mathbb {K} } (in den meisten Fällen {\displaystyle \mathbb {K} =\mathbb {R} } oder {\displaystyle \mathbb {K} =\mathbb {C} }), auf dem zwei Normen {\displaystyle \|\cdot \|_{1}} und {\displaystyle \|\cdot \|_{2}} definiert sind.

Dann heißt, {\displaystyle \|\cdot \|_{2}} stärker oder feiner als {\displaystyle \|\cdot \|_{1}}, wenn eine positive Zahl C existiert, sodass

{\displaystyle \|x\|_{1}\leq C\cdot \|x\|_{2}{\text{ für alle }}x\in X}

ist. Entsprechend wird dann auch {\displaystyle \|\cdot \|_{1}} schwächer oder gröber als {\displaystyle \|\cdot \|_{2}} genannt.

Die Normen {\displaystyle \|\cdot \|_{1}} und {\displaystyle \|\cdot \|_{2}} heißen äquivalent, wenn es positive Zahlen {\displaystyle c,C} gibt, sodass

{\displaystyle c\cdot \|x\|_{2}\leq \|x\|_{1}\leq C\cdot \|x\|_{2}{\text{ für alle }}x\in X}

gilt. Zwei Normen sind somit äquivalent, wenn {\displaystyle \|\cdot \|_{1}} stärker ist als {\displaystyle \|\cdot \|_{2}} und \|\cdot \|_{2} stärker ist als {\displaystyle \|\cdot \|_{1}}.

Beispiele

Endlichdimensional

Gegeben sei der \mathbb {R} ^{n}, versehen mit der Maximumsnorm und der Summennorm

{\displaystyle \|x\|_{\infty }:=\max _{1\leq i\leq n}|x_{i}|{\text{ sowie }}\|x\|_{1}:=\sum _{i=1}^{n}|x_{i}|}.

Dann ist wegen {\displaystyle |x_{i}|\leq \max _{1\leq i\leq n}|x_{i}|} auch immer

{\displaystyle \sum _{i=1}^{n}|x_{i}|\leq n\cdot \max _{1\leq i\leq n}|x_{i}|}.

Somit ist

{\displaystyle \|x\|_{1}\leq n\cdot \|x\|_{\infty }},

demnach ist die Maximumsnorm stärker als die Summennorm. Umgekehrt ist immer

{\displaystyle \max _{1\leq i\leq n}|x_{i}|\leq \sum _{i=1}^{n}|x_{i}|{\text{, also }}\|x\|_{\infty }\leq \|x\|_{1}},

da der betragsgrößte Eintrag eine Vektors nie größer ist als die Summe der Beträge aller Einträge des Vektors. Somit ist die Summennorm stärker als die Maximumsnorm. Insgesamt gilt dann

{\displaystyle \|x\|_{\infty }\leq \|x\|_{1}\leq n\cdot \|x\|_{\infty }},

Maximumsnorm und Summennorm im \mathbb {R} ^{n} sind also äquivalent. Tatsächlich lässt sich zeigen, dass auf beliebigen endlichdimensionalen Vektorräumen alle Normen äquivalent sind.

Unendlichdimensional

Betrachtet man den Vektorraum {\displaystyle C([0,1],\mathbb {R} )} der reellwertigen stetigen Funktionen auf dem abgeschlossenen Intervall von null bis eins, so lassen sich zwei Normen definieren:

{\displaystyle \|f\|_{L^{1}}:=\int _{[0,1]}|f(x)|\mathrm {d} \lambda (x)}
definieren.

Das Integral lässt sich nach oben aber immer durch den größtmöglichen Funktionswert abschätzen, es gilt hier also

{\displaystyle \int _{[0,1]}|f(x)|\mathrm {d} \lambda (x)\leq \sup _{x\in [0,1]}|f(x)|}

und somit

{\displaystyle \|f\|_{L^{1}}\leq \|f\|_{\infty }}.

Die Supremumsnorm ist also stärker als die L1-Norm.

Die beiden Normen sind jedoch nicht äquivalent: Beispielsweise gilt für die durch {\displaystyle f_{n}(x)=\max(2n-2n^{2}x,0)} mit n\in \mathbb {N} definierten Funktionen {\displaystyle \|f_{n}\|_{L^{1}}=1} und {\displaystyle \|f_{n}\|_{\infty }=2n}. Es kann also keine Konstante C mit {\displaystyle \|f\|_{\infty }\leq C\|f\|_{L^{1}}} für alle Funktionen f in {\displaystyle C([0,1],\mathbb {R} )} geben.

Interpretation

Sind zwei Normen {\displaystyle \|\cdot \|_{1}} und \|\cdot \|_{2} gegeben und ist \|\cdot \|_{2} stärker als {\displaystyle \|\cdot \|_{1}}, so ist die Kugel

{\displaystyle B_{r}^{\|\cdot \|_{1}}:=\{x\in X\,|\,\|x\|_{1}\leq r\}}

immer in der Kugel {\displaystyle C\cdot B_{r}^{\|\cdot \|_{2}}} enthalten. Somit erzwingt eine Konvergenz bezüglich \|\cdot \|_{2} immer automatisch eine Konvergenz bezüglich {\displaystyle \|\cdot \|_{1}}, da die Normkugeln von \|\cdot \|_{2} nach Reskalierung immer die Normkugeln von {\displaystyle \|\cdot \|_{1}} enthalten. Somit „majorisiert“ \|\cdot \|_{2} stets {\displaystyle \|\cdot \|_{1}}.

Die Äquivalenz der Normen bedeutet nun, dass sowohl \|\cdot \|_{2} stärker als {\displaystyle \|\cdot \|_{1}} ist als auch, dass {\displaystyle \|\cdot \|_{1}} stärker als {\displaystyle \|\cdot \|_{2}} ist. Nach dem obigen Argument konvergiert demnach eine Folge bezüglich \|\cdot \|_{2} genau dann, wenn sie bezüglich {\displaystyle \|\cdot \|_{1}} konvergiert.

Eigenschaften

{\displaystyle d_{1}(x,y)=\|x-y\|_{1}{\text{ und }}d_{2}(x,y)=\|x-y\|_{2}},
dass dann auch d_{2} stärker als d_{1} ist.
Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
©  biancahoegel.de
Datum der letzten Änderung:  Jena, den: 01.02. 2019