Hülsenfrüchtler
Hülsenfrüchtler | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zottige Wicke (Vicia villosa), Blüten und unreife Hülsenfrucht | ||||||||||||
Systematik | ||||||||||||
| ||||||||||||
Wissenschaftlicher Name | ||||||||||||
Fabaceae | ||||||||||||
Lindl. |
Die Hülsenfrüchtler (Fabaceae oder Leguminosae; früher: Papilionaceae), auch Leguminosen genannt, sind eine der artenreichsten Pflanzenfamilien und gehören zur Ordnung der Schmetterlingsblütenartigen (Fabales). Sie wurde früher in drei Unterfamilien, die manchmal auch als eigene Familien behandelt wurden, seit 2017 in sechs Unterfamilien, mit vielen Tribus, gegliedert und enthält insgesamt etwa 730 Gattungen mit fast 20.000 Arten.[1] Sie enthält die artenreichste Gattung innerhalb der Gefäßpflanzen: Astragalus mit etwa 2000 Arten.
Die Hülsenfrüchtler sind eine von wenigen Familien, die zwei gültige, alternativ verwendbare wissenschaftliche Namen besitzen: Der Name Leguminosae wurde von Michel Adanson im Jahr 1763 geschaffen. Erst 1836 wurde von John Lindley der neue Name Fabaceae gebildet. Der nomenklatorische Typus zu beiden Namen ist die Gattung Faba Miller, ein Synonym von Vicia L.
Beschreibung
Erscheinungsbild
Es sind zum einen ein- bis zweijährige oder ausdauernde krautige Pflanzen und zum anderen verholzende Pflanzen: Bäume, Sträucher und Lianen. Sie wachsen selbständig aufrecht, kriechend oder kletternd. Bei einer ganzen Reihe von Arten oder Sorten der Kulturpflanzen führen die Sprossachsen kreisende Bewegungen meist in, seltener gegen den Uhrzeigersinn aus; es sind windende Pflanzen, die an anderen Pflanzen oder Gegenständen empor klettern. Einige Arten sind Epiphyten. Einige Arten besitzen xerophytische Anpassungen. Die Pflanzen können mit Stacheln oder Dornen bewehrt sein.
Laubblätter und Nebenblätter
Die meist wechselständigen Laubblätter sind meist gefiedert. Bei allen Unterfamilien sind ursprünglich Fiederblätter vorhanden, die in einigen Gattungen und Arten auf die Endfieder reduziert sein können, wie beispielsweise beim Färber-Ginster (Genista tinctoria), oder nur aus drei Blättchen bestehen, wie bei den Klee-Arten (Trifolium). Sie können sehr unterschiedlich groß sein.
Bei manchen Arten sind die Fiederblätter völlig oder bei vielen Arten teilweise zu Ranken umgebildet; meist werden die Ranken nur von der Endfieder gebildet. Wenn die Endfieder zu einer Ranke umgebildet ist oder fehlt, nennt man das paarig gefiedert und wenn die Endfieder normal ausgebildet ist, nennt man das unpaarig gefiedert. Bei den Cercideae sind die Blätter einfach.
Es sind Nebenblätter vorhanden, die je nach Art sehr unterschiedlich ausgeprägt sein können. Die Nebenblätter können wie bei der Robinie (Robinia pseudoacacia) zu Dornen („Nebenblattdornen“) umgebildet sein, oder sie sind wie beispielsweise bei der Ranken-Platterbse (Lathyrus aphaca) besonders groß und übernehmen die Hauptassimilationsfunktion, da die eigentlichen Blattorgane zu Ranken umgebildet sind. Einige Arten besitzen eine verdickte Stelle im unteren Teil des Nebenblattes, die Bewegungen bewirken kann („Pulvinus“).
Bei einigen Arten sind die Blätter reduziert und Phyllodien übernehmen die Aufgabe der Photosynthese.
Blütenstände und Blüten
Die Blüten können in traubigen, ährigen, rispigen, wickelförmigen oder kopfigen Blütenständen zusammen stehen.
Die meist zwittrigen, radiärsymmetrischen bis zygomorphen Blüten sind meist fünfzählig mit doppeltem Perianth. Besonders bei den Mimosoideae kommen auch einhäusig getrenntgeschlechtige (monözische) Arten vor. Die meist fünf (drei bis sechs) Kelchblätter sind verwachsen. Besonders im Bau der Blüten unterscheiden sich die Unterfamilien.
In der Knospenlage besitzen die Kronblätter Faboideae eine absteigende Deckung, aber bei den Caesalpinioideae mit aufsteigender Deckung. Es kann ein Blütenbecher vorhanden sein. Es sind meist fünf (ein bis fünf) Kronblätter vorhanden; mindestens drei Kronblätter sind untereinander frei. Die typischen Schmetterlingsblüten, es geht um die Blütenkrone, entsteht durch die Ausformung der meist fünf Blütenkronblätter. Das obere, meist aufgerichtete Kronblatt nennt man Fahne („Vexillum“), die beiden seitlichen nennt man Flügel („Alae“), die beiden unteren schließlich sind mehr oder weniger stark verwachsen oder verklebt und bilden das Schiffchen („Carina“). Die Kronblätter können genagelt sein. Nur bei 26 Gattungen der Caesalpinioideae, einigen Gattungen der Swartzieae und Amorphieae fehlen Blütenhüllblätter, dann sind die Staubblätter am auffälligsten und es dienen bei ihnen meist Fledertiere als Bestäuber.
Wenn zehn Staubblätter vorhanden sind, dann sind sie bei den Faboideae meist alle oder nur zu neunt verwachsen und bilden eine lange Röhre (bzw. Rinne bei 9 verwachsenen), die das Fruchtblatt umgibt; oder die Staubblätter sind untereinander frei (Sophora). Bei den Mimosoideae sind drei bis hundert Staubblätter vorhanden. Selten sind nur ein oder zwei Staubblätter vorhanden. Bei wenigen Taxa sind die Staubblätter mit den Kronblättern verwachsen. Entweder sind alle Staubblätter fertil oder ein Teil ist zu Staminodien umgewandelt. Die Pollenkörner besitzen meist drei oder sechs, seltener zwei, vier oder keine Aperturen; sie sind meist colporat, oder seltener porat, colpat, oder rugat; sie sind fast immer zweizellig oder bei wenigen Mimosoideae dreizellig. In jeder Blüte gibt es meist nur ein mittel- bis oberständiges Fruchtblatt; bei wenigen Mimosoideae sind zwei bis 16 freie Fruchtblätter vorhanden.
Die Bestäubung erfolgt durch Insekten (Entomophilie), Vögel (Ornithophilie, besonders bei südaustralischen Arten) oder Fledertiere (Chiropterophilie). Die Übertragungsmechanismen des Pollens auf Insekten bei der Bestäubung sind bei vielen Arten sehr interessant, es gibt beispielsweise einen „Explosionsmechanismus“ (Besenginster, Cytisus scoparius) oder „Klappmechanismus“ (Färberginster, Genista tinctoria).
Früchte und Samen
Die Hülsenfrüchtler haben ihren Namen von der „Hülsenfrucht“, einem Fruchttyp, der nur hier vorkommt. Es wird eine Hülsenfrucht gebildet, die sich bei Reife meist an der Bauch- und Rückennaht öffnet. Seltener werden auch Gliederhülsen mit Bruchfrüchten (Kleiner Vogelfuß, Ornithopus perpusillus), die sich zu Nüsschen entwickeln, ausgebildet. Einige wenige Taxa bilden auch Balgfrüchte, Samaras, achänen-, beeren- oder steinfruchtähnliche Früchte. Bei einigen Mimosoideae können auch mehrere Früchte zu einer Sammelfrucht vereint sein. Die Früchte enthalten ein bis hundert Samen. Die kleinen bis sehr großen Samen sind meist ungeflügelt oder besitzen selten, wie bei einigen Mimosoideae, Flügel. Die stärkehaltigen oder -freien Samen können eine Mikropyle besitzen, die zickzackförmig sein kann.
Ökologie
Symbiose mit Bakterien und Pilzen
Die meisten Leguminosen gehen in ihren Wurzelknöllchen eine Symbiose mit stickstofffixierenden Bakterien (Rhizobien) ein. Sie machen sich dadurch unabhängig vom Nitratgehalt des Bodens und sind in extrem stickstoffarmen Böden (zum Beispiel Akazien in der „Wüste“) erst lebensfähig. Zum Schutz der Bakterien vor Luftsauerstoff sind Leguminosen in der Lage, das Sauerstoff-bindende Protein Leghämoglobin zu bilden.
Durch ihre Rhizobien tragen Leguminosen zur Fruchtbarkeit des Bodens bei (siehe Gründüngung). In der Landwirtschaft werden sie daher gern zur Melioration als Zwischenfrüchte angebaut. Die Stickstofffixierung kann 100 kg/ha pro Monat erreichen.
In Gesellschaft mit der Gartenbohne (Phaseolus vulgaris) wurde ein Pilz entdeckt, der Insekten befällt und deren Stickstoff an die Pflanze weitergibt.[2]
Inhaltsstoffe
Leguminosen sind sehr nährstoffreiche Pflanzen, die reichlich Proteine, Vitamine und Mineralstoffe, aber auch antinutrive Stoffe beinhalten. Die antinutritiven Inhaltsstoffe sind der Grund, warum Leguminosen in der Regel durch Kochen und/oder Keimen verarbeitet werden müssen.[3]
In den Samen vieler Arten der Fabaceae kommen sogenannte Lektine bzw. Glykoproteine vor. Diese können mit Kohlenhydratgruppen von Glykolipiden oder Glykoproteinen auf Zelloberflächen spezifische Bindungen eingehen, ähnlich wie Antigen-Antikörper-Reaktionen. Die Reaktion kann Blutgruppen-spezifisch erfolgen. Verbreitet kommen toxische Lektine vor, diese sind beispielsweise bei Phaseolus für die Giftigkeit roher Früchte verantwortlich.
Häufig sind Alkaloide enthalten. Als Fraßschutz sind Chinolizidin-Alkaloide vorhanden; bei sogenannten „Süßlupinen“ wurden sie durch Züchtung entfernt, sodass diese Sorten als Futtermittel angebaut werden können. Auch andere cyanogene Verbindungen dienen als Fraßschutz.
Auch Saponine stellen eine wichtige Inhaltsstoffgruppe dar. Flavonole können vorhanden sein.
Bedeutung als Nutzpflanzen
Aufgrund ihres hohen Eiweißgehalts (Legumin) sind Früchte und Samen der Hülsenfrüchtler fast weltweit ein wichtiger Bestandteil der menschlichen Ernährung. Insbesondere bei fleischarmer oder vegetarischer Kost sind sie fast unverzichtbar. Beispiele sind etwa Erbsen, Kichererbsen, Bohnen, Azukibohnen, Limabohnen und Linsen, die zur Unterfamilie der Schmetterlingsblütler (Faboideae) gehören. Oft werden nur die Samen gegessen und umgangssprachlich werden dann die Samen – totum pro parte – meist „Hülsenfrüchte“ genannt. Dagegen werden bei grünen Bohnen und Zuckererbsen die ganzen Früchte gegessen. Einige Hülsenfrüchte können wie Zuckererbsen roh gegessen werden. Aufgrund der enthaltenen Alkaloide und Lektine sind viele im rohen Zustand gesundheitsschädlich. Speziell grüne Bohnen müssen vor dem Verzehr vollständig durchgegart werden. Die Lagerung erfolgt meist in getrocknetem Zustand. Außer bei Linsen und geschälten, halben Erbsen ist in der Regel ein Einweichen in Wasser (über Nacht) notwendig, um die Kochzeit auf ein vertretbares Maß zu reduzieren.
Fruchtart | Wasser | Proteine | Kohlenhydrate | Ballaststoffe | Fette |
---|---|---|---|---|---|
grüne Bohnen | 82–90 | 2,5–6 | 6,5–8,5 | na | 0,3 |
Bohnen, getrocknet | 11–14 | 24–26 | 47–55 | na | 1,5–2 |
frische Erbsen | 80 | 2,5–6,5 | 4–12,5 | na | 0,5 |
Erbsen, getrocknet | 14 | 23 | 53 | na | 2 |
Kichererbsen, getrocknet | 20,5 | 61 | na | 4,8 | |
Linsen, getrocknet | 12 | 26 | 53 | na | 2 |
Sojabohnen, getrocknet | 10 | 34 | 27 | na | 19 |
Erdnüsse, getrocknet | 2 | 24 | 22 | na | 50 |
Lupinen, getrocknet | 15 | 38 | 25 | na | 4 |
Der überwiegende Anteil der in den Hülsenfrüchten enthaltenen Kohlenhydrate sind Mehrfachzucker, vor allem Raffinose.
In Europa wird der größte Anteil der angebauten Leguminosen als Futtermittel für Wiederkäuer, Schweine und Hühner eingesetzt. Für die Fütterung werden besonders Erbsen, Ackerbohnen, Lupinen, Luzerne (Alfalfa) und Sojabohnen angebaut. Der Großteil des Bedarfs an eiweißreichen Futtermitteln in Europa wird durch Importe von Sojabohnen vor allem aus Lateinamerika gedeckt.[4]
Die positiven Umweltwirkungen der Leguminosen haben zu einer Förderung dieser Kulturen im Rahmen der Gemeinsamen Agrarpolitik geführt.[5] Ökonomisch sind die Kulturen noch wenig attraktiv, wenn sie als Einzelkulturen verglichen werden. Wird ihr Vorfruchtwert in der Fruchtfolge mit berücksichtigt, können Leguminosen unter bestimmten Bedingungen ökonomisch attraktiv sein.[6] Für eine solche Bewertung sind Modelle entwickelt worden, welche diese Annahme bestätigen und gleichzeitig aufzeigen, dass große Mengen Stickstoffdünger eingespart und Emissionen von Lachgas reduziert werden können.[7] Die Einsparungen können bis zu 50 % betragen.[8]
Viele Arten liefern tropische Hölzer (Palisander: Dalbergia- und Machaerium-Arten, Sophora-Arten). In den gemäßigten Gebieten wurde die Robinie als Forstpflanze angepflanzt und ist verwildert. Viele Arten und ihre Sorten werden als Zierpflanzen verwendet.
Systematik und botanische Geschichte
Die Familie Fabaceae wurde 1836 durch John Lindley in An Introduction to the Natural System of Botany, 148 aufgestellt.[9]
Die Familie Fabaceae umfasst etwa 730 Gattungen mit fast 20.000 Arten. Sie wurde Anfang des 21. Jahrhunderts noch in drei Unterfamilien und etwa 35 Tribus gegliedert[10] (Gattungen siehe Unterfamilien und Tribus): Die Forschungsarbeiten der 2000er Jahre zeigten, dass noch mehr Gruppen aus den Unterfamilien ausgegliedert werden müssen, damit die Unterfamilien monophyletisch werden. Dabei scheint wohl die Unterfamilie Faboideae in ihrem Umfang der 2000er Jahre monophyletisch zu sein. Die Tribus war noch 2006 Cassieae s. l. ist polyphyletisch. Die Unterfamilie Caesalpinioideae ist 2006 weitgehend aufgelöst.[11]
Synonyme der Familie Fabaceae Lindl. sind: Acaciaceae E.Mey., Aspalathaceae Martinov, Astragalaceae Bercht. & J.Presl, Caesalpiniaceae R.Br. nom. cons., Cassiaceae Vest, Ceratoniaceae Link, Detariaceae (DC.) Hess, Hedysaraceae Oken, Inocarpaceae Zoll., Leguminosae Adans., nom. cons., Mimosaceae R.Br., nom. cons., Papilionaceae Giseke, nom. cons., Phaseolaceae Schnitzl., Swartziaceae (DC.) Bartl., Viciaceae Bercht. & J.Presl.[10]
Schmetterlingsblütler (Faboideae)
Schmetterlingsblütler (Faboideae): Sie wird in etwa 28 Tribus gegliedert und enthält etwa 476 Gattungen mit etwa 13855 Arten. Sie besitzen die typischen, zygomorphen Schmetterlingsblüten.
- Abreae
- Amorpheae
- Bossiaeeae
- Brongniartieae
- Cicereae
- Crotalarieae
- Dalbergieae
- Desmodieae
- Dipterygeae
- Euchresteae
- Fabeae
- Galegeae
- Genisteae
- Hedysareae
- Hypocalypteae
- Indigofereae
- Loteae
- Millettieae
- Mirbelieae
- Phaseoleae
- Podalyrieae
- Psoraleeae
- Robinieae
- Sesbanieae
- Sophoreae
- Swartzieae
- Thermopsideae
- Trifolieae
Mimosengewächse (Mimosoideae)
Mimosengewächse (Mimosoideae): Sie wird in etwa drei Tribus gegliedert und enthält etwa 82 Gattungen mit etwa 3275 Arten. Die Blüten sind meist radiärsymmetrisch.
- Acacieae
- Ingeae
- Mimoseae
Johannisbrotgewächse (Caesalpinioideae)
Johannisbrotgewächse (Caesalpinioideae): Sie wird in etwa zwei Tribus gegliedert und enthält etwa 140 Gattungen mit über 1000 verholzenden Arten. Die Blüten sind meist zygomorph:
- Caesalpinieae
- Cassieae
2006 wurden wenige Tribus keiner der drei Unterfamilien zugeordnet, aber sie haben ab 2010, 2013, 2018 den Rang von weiteren Unterfamilien:[1]
Evolution
Der Familie Fabaceae wird in der späten Kreidezeit (vor 65 bis 70 Millionen Jahren) vermutet.
Quellen
- Die Familie der Fabaceae bei der APWebsite. (englisch)
- Die Familie der Fabaceae bei DELTA von L. Watson and M. J. Dallwitz. (englisch)
- Martin F. Wojciechowski, Matt Lavin, Michael J. Sanderson: A Phylogeny of Legumes (Leguminosae) Based on Analysis of the Plastid matK Gene Resolves Many Well-supported Subclades Within the Family. In: American Journal of Botany, Volume 91, Issue 11, November 2004, ISSN 0002-9122, S. 1846–1862.
- Martin F. Wojciechowski, Johanna Mahn, Bruce Jones: Fabaceae – Legumes: Eintrag beim Tree-of-Life-Projekt, 2006.
Einzelnachweise
- ↑ Hochspringen nach: a b c d e f The Legume Phylogeny Working Group = LPWG: A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. In: Taxon, Volume 66, Issue 1, 2017, S. 44–77. doi:10.12705/661.3
- ↑ Scott W. Behie, Paul M. Zelisko, Michael J. Bidochka: Endophytic Insect-Parasitic Fungi Translocate Nitrogen Directly from Insects to Plants. In: Science. Band 336, 2012, S. 1576–1577, doi:10.1126/science.1222289.
- ↑ Nutritive und antinutritive Inhaltsstoffe der Leguminosen, (im Internet Archive)
- ↑ Sofia Quaglia: Legumes research gets flexitarian pulses racing with farming guidance. 13. April 2021.
- ↑ The Environmental Role of Protein Crops in the New Common Agricultural Policy - Think Tank. In: www.europarl.europa.eu.
- ↑ Sara Preissel, Moritz Reckling, Nicole Schläfke, Peter Zander: Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. In: Field Crops Research. Band 175, 1. April 2015, S. 64–79, doi: 10.1016/j.fcr.2015.01.012.
- ↑ Moritz Reckling, Jens-Martin Hecker, Göran Bergkvist, Christine A. Watson, Peter Zander: A cropping system assessment framework—Evaluating effects of introducing legumes into crop rotations. In: European Journal of Agronomy. doi: 10.1016/j.eja.2015.11.005.
- ↑ Sofia Quaglia: Legumes research gets flexitarian pulses racing with farming guidance. 13. April 2021 (englisch).
- ↑ John Lindley: An Introduction to the Natural System of Botany, 1836, 148.
- ↑ Hochspringen nach: a b Fabaceae im Germplasm Resources Information Network (GRIN), USDA, ARS, National Genetic Resources Program. National Germplasm Resources Laboratory, Beltsville, Maryland.
- ↑ Martin F. Wojciechowski, Johanna Mahn, Bruce Jones: Fabaceae – Legumes: Eintrag beim Tree-of-Life-Projekt, 2006. (englisch)
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 01.10. 2024